CSCI3610: Special Exercise Set 3

Problem 1. If we run the activity-selection algorithm taught in the class on the following input: $S=\{[1,10],[2,22],[3,23],[20,30],[25,45],[40,50],[47,62],[48,63],[60,70]\}$ what is the set of intervals returned?

Problem 2. The following is another greedy algorithm for the activity selection problem. Initialize an empty T, and then repeat the following steps until S is empty:

- (Step 1) Add to T the interval I with the shortest length.
- (Step 2) Remove from S the interval I, and all the intervals overlapping with I.

Finally, return T as the answer.
Prove: the above algorithm does not always return an optimal solution.
Problem 3 (Fractional Knapsack). Let $\left(w_{1}, v_{1}\right),\left(w_{2}, v_{2}\right), \ldots,\left(w_{n}, v_{n}\right)$ be n pairs of positive real values. Given a real value $W \leq \sum_{i=1}^{n} w_{i}$, we want to find $x_{1}, x_{2}, \ldots, x_{n}$ to maximize the objective function

$$
\sum_{i=1} \frac{x_{i}}{w_{i}} \cdot v_{i}
$$

subject to

- $0 \leq x_{i} \leq w_{i}$ for every $i \in[1, n]$;
- $\sum_{i=1}^{n} x_{i} \leq W$.
W.l.o.g., assume that $v_{1} \geq v_{2} \geq \ldots \geq v_{n}$. Consider the algorithm that works as follows.

1. for $i \leftarrow 1$ to n do
2. $\quad x_{i} \leftarrow \min \left\{W, w_{i}\right\}$
3. $W \leftarrow W-x_{i}$

Prove: the above algorithm does not always returns an optimal solution.
Problem 4 (0-1 Knapsack). Suppose that there are n gold bricks, where the i-th piece weighs p_{i} bounds and is worth d_{i} dollars. Given a positive integer W, our goal is to find a set S of gold bricks such that

- the total weight of the bricks in S is at most W, and
- the total value of the bricks in S is maximized (among all the sets S satisfying the first condition).

Assuming $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$, let us consider the following greedy algorithm:

1. $S=\emptyset$
2. for $i=1$ to n
3. if $p_{i} \leq W$ then
4. add p_{i} to $S ; W \leftarrow W-p_{i}$

Prove: the above algorithm does not guarantee finding the desired set S.

