CSCI3160: Special Exercise Set 13

Prepared by Yufei Tao

Problem 1. Consider $\mathcal{S}=\{$ arid, dash, drain, heard, lost, nose, shun, slate, snare, thread $\}$. Given a set L of letters, we call L a hitting set if every word in \mathcal{S} uses at least one letter in L. Our goal is to find a hitting set of the smallest size. Re-formulate the problem as a set cover problem.

Problem 2 (2022 Fall Final Exam Problem). Let $G=(V, E)$ be a simple undirected graph. A 5 -cycle is a cycle with 5 edges. We say that a subset $D \subseteq E$ is a 5 -cycle destroyer if removing the edges of D destroys all the 5 -cycles in G, namely, $G^{\prime}=(V, E \backslash D)$ has no 5 -cycles. For example, if G is the graph below, there is only one 5 -cycle $a c b d e a$; a 5 -cycle destroyer is $\{\{d, e\}\}$, and so is $\{\{d, e\},\{c, d\}\}$.

Let D^{*} be a 5 -cycle destroyer with the minimum size. Design an algorithm to find a 5 -cycle destroyer of size $O\left(\left|D^{*}\right| \cdot \log |V|\right)$ in time polynomial to $|V|$.

Problem 3. Consider the following set P of points:

Run the k-center algorithm on P with $k=3$. Suppose that the first center has been chosen to be f. Show what are the second and third centers found by the algorithm?

Problem 4. The k-center problem we defined in the lecture is on a set P of 2D points. Extend the problem definition to 3D space and design a 2 -approximate algorithm.

Problem 5. Explain how the k-center algorithm can be implemented in $O(n k)$ time. You can assume that the Euclidean distance between any two points can be calculated in $O(1)$ time.

