CSCI3160: Special Exercise Set 12

Prepared by Yufei Tao

Problem 1 (Textbook Exercise 35.3-1). Consider $\mathcal{S}=\{$ arid, dash, drain, heard, lost, nose, shun, slate, snare, thread $\}$. Treat each word in \mathcal{S} as a set of letters. Run the set-cover algorithm discussed in the lecture and describe its output.

Problem 2. Recall that our set-cover algorithm in each iteration picks a set with the largest benefit. Prove: if we lay out the sets in the order they are picked, their benefits are non-ascending.

Problem 3*. Give a counterexample input to show that the approximation ratio of our set-cover algorithm cannot be bounded by 2 .

Problem 4. As mentioned in the lecture, the set cover problem is NP-hard. This means that it cannot be solved in polynomial time unless $\mathrm{P}=\mathrm{NP}$. Now consider the following decision version of the set cover problem. As before, let \mathcal{S} be a collection of sets and define the universe $U=\bigcup_{S \in \mathcal{S}} S$. But now we are also given an integer k. The goal is to decide whether there is a set cover $\mathcal{C} \subseteq \mathcal{S}$ such that $|\mathcal{C}|=k$ and return such a \mathcal{C} if the answer is yes. Show that, unless $\mathrm{P}=\mathrm{NP}$, this decision version does not admit any polynomial-time algorithm.

Problem 5. Let \boldsymbol{M} be an $n \times m$ matrix where each cell is either 0 or 1 . It is guaranteed that every row of \boldsymbol{M} has at least one 1 . A set S of columns is a column cover if every row of \boldsymbol{M} has a 1 in at least one column of S. If OPT is the minimize size of all column covers, describe a poly (n, m)-time algorithm (i.e., polynomial in n and m) that finds a column cover of size $O(\mathrm{OPT} \cdot \log n)$.

