CSCI3160: Special Exercise Set 11

Prepared by Yufei Tao

Problem 1. Consider the undirected graph G below.

(a) What is the size of a smallest vertex cover of G ?
(b) Is it possible for our vertex cover algorithm (taught in the class) to output a vertex cover of size 4 ?
(c) How about size 6 ?

Problem 2. Define "variable" and "literal" in the same way as we did for the MAX-3SAT problem. However, re-define a clause as the OR of an arbitrary number of literals subject to the constraint that all literals need to be defined on distinct variables. Prove: by independently setting each variable to 0 or 1 with 50% probability, we ensure that the clause should evaluate to 1 with probability at least $1 / 2$.

Problem 3. Consider the undirected graph G below.

Use the algorithm taught in the class to find a Hamiltonian cycle that achieves an approximation ratio of 2 .

Problem 4. In Step 2 of our 2-approximate algorithm for our traveling salesman problem, we need to compute a walk from the MST T computed in Step 1. Explain how to compute the walk in time proportional to the number of vertices in T.

Problem 5 (Euclidean Traveling Salesman). Let P be a set of n points in 2D space. Define a cycle as a sequence of n line segments: $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{n}, t_{n}\right)$ where

- $s_{i} \in P$ and $t_{i} \in P$ for each $i \in[1, n]$;
- $t_{i}=s_{i+1}$ for all $i \in[1, n-1]$ and $s_{1}=t_{n}$;
- $P=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\} ;$
- each $\left(s_{i}, t_{i}\right)$ is a segment connecting points s_{i} and t_{i}.

The length of the cycle is the total length of all the n segments. Let OPT_{P} be the shortest length of all cycles. Design a poly (n)-time algorithm (i.e., polynomial in n) that finds a cycle with length at most $2 \cdot \mathrm{OPT}_{P}$.

Note: for this problem, you can assume that the distance between any two points can be calculated in polynomial time.

