CSCI3160: Quiz 3

Name:

Student ID

Problem 1 (30%). Let G be the complete graph shown below.

Recall that our 2-approximate TSP (traveling salesman problem) algorithm computes a walk and then generates a Hamiltonian cycle from the walk. If the walk is *ABDEDBCBA*, what is the Hamiltonian cycle returned?

Answer. ABDECA.

Problem 2 (30%). Consider the set of points shown in the figure below. Suppose that we run the k-center algorithm discussed in class with point a as the first center. Run the algorithm with k = 5. Circle the centers returned in the figure.

Answer.

Problem 3 (40%). Let G = (V, E) be an undirected simple graph. A matching is a subset $M \subseteq E$ such that no two edges in M share a common vertex. Let OPT be the maximum size of all possible matchings. For example, OPT = 4 for the graph below, as is the size of the matching comprising edges $\{a, b\}, \{c, d\}, \{e, f\}, \{g, h\}$.

Consider the algorithm below:

algorithm

- 1. $M = \emptyset$
- 2. while there is an edge $e \in E$ having no common vertices with the edges in M do
- 3. add e to M
- 4. return M

Prove: the above algorithm returns a matching with size at least OPT/2.

Answer. Let S be the set of vertices of the edges in M. By how our algorithm runs, we have |S| = 2|M|; furthermore, every edge in G must be incident on at least one vertex in S.

Consider any optimal matching M^* . We argue that $|M^*| \leq |S|$. To prove this, for each edge $\{u, v\} \in M^*$:

- if $u \in S$, we ask u to pay a dollar;
- if $v \in S$, we ask v to pay a dollar.

At least one dollar is paid for $\{u, v\}$ because either u, or v, or both are in S. No vertex $u \in S$ is asked to pay twice because M^* can have at most one edge incident on u. Therefore

 $|M| \leq \text{total number of dollars paid} \leq |S|.$

It now follows that $OPT = |M^*| \le |S| = 2|M|$.