CSCI3160: Quiz 3

Name:

Student ID

Problem 1 (30\%). Let G be the complete graph shown below.

Recall that our 2-approximate TSP (traveling salesman problem) algorithm computes a walk and then generates a Hamiltonian cycle from the walk. If the walk is $A B D E D B C B A$, what is the Hamiltonian cycle returned?

Answer. $A B D E C A$.
Problem $2(\mathbf{3 0 \%})$. Consider the set of points shown in the figure below. Suppose that we run the k-center algorithm discussed in class with point a as the first center. Run the algorithm with $k=5$. Circle the centers returned in the figure.

Answer.

Problem $3 \mathbf{(4 0 \%)}$. Let $G=(V, E)$ be an undirected simple graph. A matching is a subset $M \subseteq E$ such that no two edges in M share a common vertex. Let OPT be the maximum size of all possible matchings. For example, OPT $=4$ for the graph below, as is the size of the matching comprising edges $\{a, b\},\{c, d\},\{e, f\},\{g, h\}$.

Consider the algorithm below:

algorithm

1. $M=\emptyset$
2. while there is an edge $e \in E$ having no common vertices with the edges in M do
3. \quad add e to M
4. return M

Prove: the above algorithm returns a matching with size at least OPT/2.
Answer. Let S be the set of vertices of the edges in M. By how our algorithm runs, we have $|S|=2|M|$; furthermore, every edge in G must be incident on at least one vertex in S.

Consider any optimal matching M^{*}. We argue that $\left|M^{*}\right| \leq|S|$. To prove this, for each edge $\{u, v\} \in M^{*}$:

- if $u \in S$, we ask u to pay a dollar;
- if $v \in S$, we ask v to pay a dollar.

At least one dollar is paid for $\{u, v\}$ because either u, or v, or both are in S. No vertex $u \in S$ is asked to pay twice because M^{*} can have at most one edge incident on u. Therefore

$$
|M| \leq \text { total number of dollars paid } \leq|S| \text {. }
$$

It now follows that $\mathrm{OPT}=\left|M^{*}\right| \leq|S|=2|M|$.

