CSCI3160: Quiz 2

Name:

Student ID

Problem $1 \mathbf{(5 0 \%)}$. Consider the optimal BST problem on $S=\{1,2,3,4\}$ and the weight array $W=(25,15,20,50)$. Given integers $a, b \in[1,4]$, define

$$
\operatorname{optavg}(a, b)= \begin{cases}0 & \text { if } a>b \\ \text { the smallest average cost of a BST on }\{a, a+1, \ldots, b\} & \text { if } a \leq b\end{cases}
$$

Some function values have been calculated for you:

$$
\begin{array}{ll}
\operatorname{optavg}(1,1) & =25 \\
\operatorname{optavg}(1,2) & =55 \\
\operatorname{optavg}(1,3) & =105 \\
\operatorname{optavg}(2,4) & =135 \\
\operatorname{optavg}(3,4) & =90 \\
\operatorname{optavg}(4,4) & =50 .
\end{array}
$$

Prove: The optimal BST is not unique.
Solution. As derived in the lecture:

$$
\operatorname{optavg}(1,4)=\left(\sum_{i=1}^{4} W[i]\right)+\min _{r=1}^{4}\{\operatorname{optavg}(1, r-1)+\operatorname{optavg}(r+1, b)\} .
$$

We enumerate all possibilities of the root's key:

- If the root has key 1 , the best BST has average cost $110+\operatorname{optavg}(2,4)=110+135=245$.
- If the root has key 2 , the best BST has average cost $110+\operatorname{optavg}(1,1)+\operatorname{optavg}(3,4)=$ $110+25+90=225$.
- If the root has key 3 , the best BST has average cost $110+\operatorname{optavg}(1,2)+\operatorname{optavg}(4,4)=$ $110+55+50=215$.
- If the root has key 4 , the best BST has average cost $110+\operatorname{optavg}(1,3)=110+105=215$.

It thus follows that an optimal BST has average cost 215. As setting the root key to 3 or 4 can both yield an optimal BST, we know that there are at least two optimal BSTs.

Problem 2 (50\%). Consider the directed graph G below.

Run the SCC (strongly connected components) algorithm taught in our lecture on this graph. Recall that the algorithm performs 3 steps:

- Step 1: Run DFS on G.
- Step 2: Create a new graph G^{\prime}.
- Step 3: Run DFS on G^{\prime}.

You must start the DFS of Step 1 from vertex 1. Answer the following questions:
(i) Indicate the vertices' turn-black order obtained in Step 1.
(ii) Draw the graph G^{\prime}.
(iii) Indicate all the SCCs output by Step 3, and the root of each DFS-tree produced in this step.

Solution. (i) The following are both correct turn-black orders:

- $6,8,5,4,3,7,2,1$
- $8,6,5,4,3,7,2,1$
(ii)

(iii) This solution holds for both turn-black orders given in (i).

First SCC: $\{1,7,2\}$, root vertex 1 .
Second SCC: $\{3\}$, root vertex 3 .
Third SCC: $\{4,5,6\}$, root vertex 4 .
Fourth SCC: $\{8\}$, root vertex 8 .

