CSCI3160: Quiz 1

Name:

Student ID

Problem 1 (40\%). Consider an array storing $n=9$ integers: $A=(70,30,40,10,80,90,50,60,20)$. Recall that, in the k-selection algorithm, we randomly select a pivot p from A and recurse into a subproblem if the subproblem has size at most $2 n / 3$. However, we declare "failure" if the subproblem has size larger than $2 n / 3$. Let us set $k=5$ (i.e., the goal of k-selection is to find the 5 th smallest element in A). Assuming that the pivot p equals 40, answer the following questions:

1. What is the rank value of p ? Remember that the rank is defined as the number of integers in A that are less than or equal to p.
2. After p has been obtained, how do you compute the rank of p in $O(n)$ time? Your description must work on a general array A, rather than only the one in the problem statement.
3. Does the algorithm declare "failure" after selecting $p=40$? You must explain your answer.

Solution.

1. The rank is 4 .
2. Initialize a counter $c=0$. For each $i \in[1, n]$, compare $A[i]$ to p and increase the counter c if $A[i] \leq p$.
3. Since $k=5$ and p has rank 4 , we will need to recurse into a subproblem whose input is $(50,60,70,80,90)$. The subproblem has a size 5 , which is less than $2 n / 3=6$. Therefore, no failure is declared.

Problem 2 (40\%). Prof. Goofy proposes the following algorithm to calculate the multiplication of two $n \times n$ matrices A and B, where n is a power of 2 . He divides each of A and B into 4 submatrices of order $n / 2$:

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
$$

Then, he computes the multiplication as follows:

$$
A B=\left[\begin{array}{ll}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}
\end{array}\right]
$$

Note that he needs to solve 8 subproblems. Prove: the running time of his algorithm is $O\left(n^{3}\right)$.
Solution. Let $f(n)$ be the running time of Prof. Goofy's algorithm. The function satisfies $f(n) \leq 8 f(n / 2)+O\left(n^{2}\right)$ and $f(1)=O(1)$. Solving the recurrence gives $f(n)=O\left(n^{3}\right)$.

Problem 3 (20\%). Run the activity-selection algorithm taught in the class on the following input:

$$
S=\{[1,10],[2,22],[3,23],[20,30],[25,45],[40,50],[47,62],[48,63],[60,70]\} .
$$

What is the set of intervals returned?
Solution. [1, 10], [20, 30], [40, 50], [60, 70]

