Problem 1. Perform k-selection to find the element e_1 with rank k_1 . Perform k-selection again to find the element e_2 with rank k_2 . The cost so far is O(n). Then, scan S once again to report every element $e \in S$ between e_1 and e_2 . This takes another O(n) time because we only need to spend O(1) on each $e \in S$.

Problem 2. Counterexample: $\mathcal{I} = \{[1, 4], [4, 5], [5, 8]\}$. The algorithm returns only $\{[4, 5]\}$ but the optimal solution is $\{[1, 4], [5, 8]\}$.

Problem 3. Identify any MST T of G. If e is an edge in T, we are done. Otherwise, T must contain a (unique) S-cross edge e'. Replacing e' with e gives another tree T'. As e has the minimum weight among all S-cross edges, the weight of T' cannot be higher than that of T. This means that T' must also be an MST.

Problem 4. $\{b, e\}, \{b, c\}, \{c, f\}, \{c, d\}, \{a, d\}.$

Problem 6.

ℓ	1	2	3	4	5	6	7	8
$opt(\ell)$	3	6	9	12	15	18	21	24

Problem 7.

	s	1	2	3	4
t	0	0	0	0	0
1	0	0	1	1	1
2	0	0	1	2	2
3	0	0	1	2	3
4	0	0	1	2	3

Problem 8.

Lemma 1. Let I_1 be the first interval selected by the algorithm. There must exist an optimal solution that contains I_1 .

Proof. Consider an arbitrary optimal solution S^* . Identify an arbitrary interval $I \in S^*$ that covers value 0. As I is at least as long as I_1 , replacing I with I_1 gives another solution S with the same size as S^* . Therefore, S must be optimal.

Lemma 2. Let $I_1, I_2, ..., I_k$ be the first $k \ge 2$ intervals selected by the algorithm (in this order). If $\{I_1, ..., I_{k-1}\}$ exists in some optimal solution, then there must exist an optimal solution that contains all of $I_1, I_2, ..., I_k$.

Proof. Consider an arbitrary optimal solution S^* that contains $I_1, ..., I_{k-1}$. Suppose that $I_{k-1} = [x, y]$. Thus, after adding I_{k-1} to S, Step 3 sets the value of a to y + 1.

Identify an arbitrary interval $I \in S^*$ that covers the value a = y + 1. As $I_k \cap [a, U]$ is at least as long as $I \cap [a, U]$, replacing I with I_k gives another solution S with the same size as S^* . Therefore, S must be optimal.

The algorithm's optimality follows from the above two lemmas.

Problem 9. For each $i \in [0, n]$, define A[1:i] as the prefix of A containing the first *i* elements. Given an integer $0 \in [1, n]$, define opt(i) as the maximum sum that can be achieved by picking elements from A[1:i] under the stated constraint. Clearly, opt(0) = 0 and opt(1) = A[1].

Lemma 3. For $i \ge 2$, it holds that $opt(i) = max\{opt(i-1), A[i] + opt(i-2)\}$.

Proof. Consider the best strategy for picking elements from A[1:i].

- If the strategy does not choose A[i], then the elements chosen also constitute an optimal solution for A[1:i-1]. Hence, opt(i) = opt(i-1).
- If the strategy chooses A[i], the rest of the elements chosen must constitute an optimal solution for A[1:i-2] (notice that the strategy cannot pick A[i-1] in this case). Hence, opt(i) = A[i] + opt(i-2).

The lemma holds true because there are no other possibilities.

We can now compute opt(i) in ascending order of i:

1. $opt(0) \leftarrow 0, opt(1) \leftarrow A[1]$ 2. for $i \leftarrow 2$ to n3. if $opt(i-1) \le A[i] + opt(i-2)$ then 4. $opt(i) \leftarrow A[i] + opt(i-2)$ else 5. $opt(i) \leftarrow opt(i-1)$

It is clear that the running time is O(n).