Problem 1. Perform k-selection to find the element e_{1} with rank k_{1}. Perform k-selection again to find the element e_{2} with rank k_{2}. The cost so far is $O(n)$. Then, scan S once again to report every element $e \in S$ between e_{1} and e_{2}. This takes another $O(n)$ time because we only need to spend $O(1)$ on each $e \in S$.

Problem 2. Counterexample: $\mathcal{I}=\{[1,4],[4,5],[5,8]\}$. The algorithm returns only $\{[4,5]\}$ but the optimal solution is $\{[1,4],[5,8]\}$.

Problem 3. Identify any MST T of G. If e is an edge in T, we are done. Otherwise, T must contain a (unique) S-cross edge e^{\prime}. Replacing e^{\prime} with e gives another tree T^{\prime}. As e has the minimum weight among all S-cross edges, the weight of T^{\prime} cannot be higher than that of T. This means that T^{\prime} must also be an MST.

Problem 4. $\{b, e\},\{b, c\},\{c, f\},\{c, d\},\{a, d\}$.

Problem 5.

Problem 6.

ℓ	1	2	3	4	5	6	7	8
$\operatorname{opt}(\ell)$	3	6	9	12	15	18	21	24

Problem 7.

	s	1	2	3	4
t	0	0	0	0	0
1	0	0	1	1	1
2	0	0	1	2	2
3	0	0	1	2	3
4	0	0	1	2	3

Problem 8.

Lemma 1. Let I_{1} be the first interval selected by the algorithm. There must exist an optimal solution that contains I_{1}.

Proof. Consider an arbitrary optimal solution S^{*}. Identify an arbitrary interval $I \in S^{*}$ that covers value 0 . As I is at least as long as I_{1}, replacing I with I_{1} gives another solution S with the same size as S^{*}. Therefore, S must be optimal.

Lemma 2. Let $I_{1}, I_{2}, \ldots, I_{k}$ be the first $k \geq 2$ intervals selected by the algorithm (in this order). If $\left\{I_{1}, \ldots, I_{k-1}\right\}$ exists in some optimal solution, then there must exist an optimal solution that contains all of $I_{1}, I_{2}, \ldots, I_{k}$.

Proof. Consider an arbitrary optimal solution S^{*} that contains I_{1}, \ldots, I_{k-1}. Suppose that $I_{k-1}=$ $[x, y]$. Thus, after adding I_{k-1} to S, Step 3 sets the value of a to $y+1$.

Identify an arbitrary interval $I \in S^{*}$ that covers the value $a=y+1$. As $I_{k} \cap[a, U]$ is at least as long as $I \cap[a, U]$, replacing I with I_{k} gives another solution S with the same size as S^{*}. Therefore, S must be optimal.

The algorithm's optimality follows from the above two lemmas.
Problem 9. For each $i \in[0, n]$, define $A[1: i]$ as the prefix of A containing the first i elements. Given an integer $0 \in[1, n]$, define $\operatorname{opt}(i)$ as the maximum sum that can be achieved by picking elements from $A[1: i]$ under the stated constraint. Clearly, opt $(0)=0$ and $\operatorname{opt}(1)=A[1]$.

Lemma 3. For $i \geq 2$, it holds that $\operatorname{opt}(i)=\max \{\operatorname{opt}(i-1), A[i]+\operatorname{opt}(i-2)\}$.
Proof. Consider the best strategy for picking elements from $A[1: i]$.

- If the strategy does not choose $A[i]$, then the elements chosen also constitute an optimal solution for $A[1: i-1]$. Hence, opt $(i)=\operatorname{opt}(i-1)$.
- If the strategy chooses $A[i]$, the rest of the elements chosen must constitute an optimal solution for $A[1: i-2]$ (notice that the strategy cannot pick $A[i-1]$ in this case). Hence, $o p t(i)=A[i]+o p t(i-2)$.

The lemma holds true because there are no other possibilities.
We can now compute $\operatorname{opt}(i)$ in ascending order of i :

1. $\operatorname{opt}(0) \leftarrow 0, \operatorname{opt}(1) \leftarrow A[1]$
2. for $i \leftarrow 2$ to n
3. if $\operatorname{opt}(i-1) \leq A[i]+o p t(i-2)$ then $o p t(i) \leftarrow A[i]+o p t(i-2)$
else
4. $\quad o p t(i) \leftarrow \operatorname{opt}(i-1)$

It is clear that the running time is $O(n)$.

