
Problem 1. Perform k-selection to find the element e1 with rank k1. Perform k-selection again to
find the element e2 with rank k2. The cost so far is O(n). Then, scan S once again to report every
element e ∈ S between e1 and e2. This takes another O(n) time because we only need to spend
O(1) on each e ∈ S.

Problem 2. Counterexample: I = {[1, 4], [4, 5], [5, 8]}. The algorithm returns only {[4, 5]} but the
optimal solution is {[1, 4], [5, 8]}.

Problem 3. Identify any MST T of G. If e is an edge in T , we are done. Otherwise, T must
contain a (unique) S-cross edge e′. Replacing e′ with e gives another tree T ′. As e has the minimum
weight among all S-cross edges, the weight of T ′ cannot be higher than that of T . This means that
T ′ must also be an MST.

Problem 4. {b, e}, {b, c}, {c, f}, {c, d}, {a, d}.

Problem 5.

b c d a

0

0

0

1

1

1

Problem 6.

ℓ 1 2 3 4 5 6 7 8

opt(ℓ) 3 6 9 12 15 18 21 24

Problem 7.

s 1 2 3 4

t 0 0 0 0 0

1 0 0 1 1 1

2 0 0 1 2 2

3 0 0 1 2 3

4 0 0 1 2 3

Problem 8.

Lemma 1. Let I1 be the first interval selected by the algorithm. There must exist an optimal
solution that contains I1.

Proof. Consider an arbitrary optimal solution S∗. Identify an arbitrary interval I ∈ S∗ that covers
value 0. As I is at least as long as I1, replacing I with I1 gives another solution S with the same
size as S∗. Therefore, S must be optimal.

Lemma 2. Let I1, I2, ..., Ik be the first k ≥ 2 intervals selected by the algorithm (in this order). If
{I1, ..., Ik−1} exists in some optimal solution, then there must exist an optimal solution that contains
all of I1, I2, ..., Ik.

1



Proof. Consider an arbitrary optimal solution S∗ that contains I1, ..., Ik−1. Suppose that Ik−1 =
[x, y]. Thus, after adding Ik−1 to S, Step 3 sets the value of a to y + 1.

Identify an arbitrary interval I ∈ S∗ that covers the value a = y + 1. As Ik ∩ [a, U ] is at least as
long as I ∩ [a, U ], replacing I with Ik gives another solution S with the same size as S∗. Therefore,
S must be optimal.

The algorithm’s optimality follows from the above two lemmas.

Problem 9. For each i ∈ [0, n], define A[1 : i] as the prefix of A containing the first i elements.
Given an integer 0 ∈ [1, n], define opt(i) as the maximum sum that can be achieved by picking
elements from A[1 : i] under the stated constraint. Clearly, opt(0) = 0 and opt(1) = A[1].

Lemma 3. For i ≥ 2, it holds that opt(i) = max{opt(i− 1), A[i] + opt(i− 2)}.

Proof. Consider the best strategy for picking elements from A[1 : i].

• If the strategy does not choose A[i], then the elements chosen also constitute an optimal
solution for A[1 : i− 1]. Hence, opt(i) = opt(i− 1).

• If the strategy chooses A[i], the rest of the elements chosen must constitute an optimal
solution for A[1 : i − 2] (notice that the strategy cannot pick A[i − 1] in this case). Hence,
opt(i) = A[i] + opt(i− 2).

The lemma holds true because there are no other possibilities.

We can now compute opt(i) in ascending order of i:

1. opt(0)← 0, opt(1)← A[1]
2. for i← 2 to n
3. if opt(i− 1) ≤ A[i] + opt(i− 2) then
4. opt(i)← A[i] + opt(i− 2)

else
5. opt(i)← opt(i− 1)

It is clear that the running time is O(n).

2


