Approximation Algorithms 4: k-Center

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

1/15

Given 2D points p and q, we use dist(p,q) to represent their Euclidean distance.

In this lecture, we will make the assumption that dist(p, q) can be computed in polynomial time.

P =a set of n points in 2D space.

Given a point $p \in P$, define its distance to a subset $C \subseteq P$ as

$$dist_{\mathcal{C}}(p) = \min_{c \in \mathcal{C}} dist(p, c).$$

The **penality** of *C* is

$$pen(C) = \max_{p \in P} dist_C(p).$$

The *k*-Center Problem: Find a subset $C \subseteq P$ with size |C| = k that has the smallest penalty.

Set Cover

Example:

P = the set of black points

$$k = 3$$

$$C = \{c_1, c_2, c_3\}$$

The problem is NP-hard.

- No one has found an algorithm solving the problem in time polynomial in n and k.
- Such algorithms cannot exist if $\mathcal{P} \neq \mathcal{NP}$.

5/15

A = an algorithm that, given any legal input P, returns a subset of P with size k.

Denote by OPT_P the smallest penalty of all subsets $C \subseteq P$ satisfying |C| = k.

 \mathcal{A} is a ρ -approximate algorithm for the k-center problem if, for any legal input P, \mathcal{A} can return a set C with penalty at most $\rho \cdot OPT_P$.

The value ρ is the approximation ratio.

We say that A achieves an approximation ratio of ρ .

□ ▶ ◀♬ ▶ ◀불 ▶ ◀불 ▶ · 볼 · 쒸익(^-

Consider the following algorithm:

Input: P

- 1. $C \leftarrow \emptyset$
- 2. add to C an arbitrary point in P
- 3. **for** i = 2 to k **do**
- 4. $p \leftarrow$ a point in P with the maximum $dist_C(p)$
- 5. add p to C
- 6. return C

The algorithm can be easily implemented in polynomial time. Later, we will prove that the algorithm is 2-approximate.

 c_1

•

Initially, $C = \{c_1\}$

Yufei Tao

Example: k = 3

 c_1

•

•

•

•

After a round, $C = \{c_1, c_2\}$

ロト 4周ト 4 章 ト 4 章 ト 章 めなべ

 c_2

Yufei Tao

 c_1

*C*₂

•

₃•

After another round, $C = \{c_1, c_2, c_3\}$

10/15

Theorem: The algorithm returns a set C with $pen(C) \leq 2 \cdot OPT_P$.

11/15

Proof: Let $C^* = \{c_1^*, c_2^*, ..., c_k^*\}$ be an optimal solution, i.e., $pen(C^*) = OPT_P$.

For each $i \in [1, k]$, define P_i^* as the set of points $p \in P$ satisfying

$$dist(p, c_i^*) \leq dist(p, c_j^*)$$

for any $i \neq i$.

Observation: For any point $p \in P_i^*$, $dist(p, c_i^*) = dist_{C^*}(p) \le pen(C^*)$.

Let $C_{ours} = \{c_1, c_2, ..., c_k\}$ be the output of our algorithm, where c_i $(i \in [1, k])$ is the *i*-th point added to C_{ours} .

> 12/15 Set Cover

Case 1: C_{ours} has a point in each of $P_1^*, P_2^*, ..., P_k^*$.

Consider any point $p \in P$. Suppose that $o \in P_i^*$ for some $i \in [1, k]$. Let c be a point in $C \cap P_i^*$. It holds that:

$$dist_{C_{ours}}(p) \le dist(c, p)$$

 $\le dist(c, c^*) + dist(c^*, p)$
 $\le 2 \cdot pen(C^*).$

Therefore:

$$pen(C_{ours}) = \max_{p \in P} dist_{C_{ours}}(p) \le 2 \cdot pen(C^*).$$

13/15

Case 2: C_{ours} has no point in at least one of $P_1^*,...,P_k^*$. Hence, one of $P_1^*,...,P_k^*$ must cover at least two points — say c_1 and c_2 — of C_{ours} . It thus follows that

$$dist(c_1, c_2) \leq dist(c_1, c_i^*) + dist(c_2, c_i^*) \leq 2 \cdot pen(C^*).$$

Next, we prove:

Lemma: For any point $p \in P$, $dist_{C_{ours}}(p) \leq dist(c_1, c_2)$.

The claim implies $pen(C_{ours}) \leq 2 \cdot pen(C^*)$.

(ロ) (国) (国) (国) (国) (ロ)

14/15

Proof of the Lemma:

W.l.o.g., assume that c_2 was picked after c_1 by our algorithm. Consider the moment right before c_2 was picked. At that moment, the set C maintained by our algorithm was a proper subset of C_{ours} .

From the fact that c_2 was the next point picked, we know $dist_C(p) \leq dist_C(c_2)$.

Because $c_1 \in C$, it holds that $dist_C(c_2) \leq dist(c_1, c_2)$.

The lemma then follows because

$$dist_{C_{ours}}(p) \leq dist_{C}(p) \leq dist_{C}(c_{2}) \leq dist(c_{1}, c_{2}).$$

ロト 4回 ト 4 重 ト 4 重 ト 9 9 0 0

15/15