Approximation Algorithms 4: k-Center

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong

Given 2D points p and q, we use $\operatorname{dist}(p, q)$ to represent their Euclidean distance.

In this lecture, we will make the assumption that $\operatorname{dist}(p, q)$ can be computed in polynomial time.
$P=$ a set of n points in 2D space.
Given a point $p \in P$, define its distance to a subset $C \subseteq P$ as

$$
\operatorname{dist}_{C}(p)=\min _{c \in C} \operatorname{dist}(p, c) .
$$

The penality of C is

$$
\operatorname{pen}(C)=\max _{p \in P} \operatorname{dist}_{C}(p) .
$$

The k-Center Problem: Find a subset $C \subseteq P$ with size $|C|=k$ that has the smallest penalty.

Example:
 $P=$ the set of black points
 $k=3$
 $C=\left\{c_{1}, c_{2}, c_{3}\right\}$

The problem is NP-hard.

- No one has found an algorithm solving the problem in time polynomial in n and k.
- Such algorithms cannot exist if $\mathcal{P} \neq \mathcal{N P}$.
$\mathcal{A}=$ an algorithm that, given any legal input P, returns a subset of P with size k.

Denote by $O P T_{P}$ the smallest penalty of all subsets $C \subseteq P$ satisfying $|C|=k$.
\mathcal{A} is a ρ-approximate algorithm for the k-center problem if, for any legal input P, \mathcal{A} can return a set C with penalty at most $\rho \cdot O P T_{p}$.

The value ρ is the approximation ratio.
We say that \mathcal{A} achieves an approximation ratio of ρ.

Consider the following algorithm:

Input: P

1. $C \leftarrow \emptyset$
2. add to C an arbitrary point in P
3. for $i=2$ to k do
4. $\quad p \leftarrow$ a point in P with the maximum $\operatorname{dist}_{C}(p)$
5. add p to C
6. return C

The algorithm can be easily implemented in polynomial time.
Later, we will prove that the algorithm is 2-approximate.

Example: $k=3$

Initially, $C=\left\{c_{1}\right\}$

Example: $k=3$

After a round, $C=\left\{c_{1}, c_{2}\right\}$

Example: $k=3$

After another round, $C=\left\{c_{1}, c_{2}, c_{3}\right\}$

Theorem: The algorithm returns a set C with pen $(C) \leq 2 \cdot O P T_{p}$.

Proof: Let $C^{*}=\left\{c_{1}^{*}, c_{2}^{*}, \ldots, c_{k}^{*}\right\}$ be an optimal solution, i.e., $p e n\left(C^{*}\right)=O P T_{p}$.

For each $i \in[1, k]$, define P_{i}^{*} as the set of points $p \in P$ satisfying

$$
\operatorname{dist}\left(p, c_{i}^{*}\right) \leq \operatorname{dist}\left(p, c_{j}^{*}\right)
$$

for any $j \neq i$.

Observation:

For any point $p \in P_{i}^{*}, \operatorname{dist}\left(p, c_{i}^{*}\right)=\operatorname{dist}_{C^{*}}(p) \leq \operatorname{pen}\left(C^{*}\right)$.

Let $C_{\text {ours }}=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ be the output of our algorithm, where c_{i}
($i \in[1, k])$ is the i-th point added to $C_{\text {ours }}$.

Case 1: $C_{\text {ours }}$ has a point in each of $P_{1}^{*}, P_{2}^{*}, \ldots, P_{k}^{*}$.
Consider any point $p \in P$. Suppose that $o \in P_{i}^{*}$ for some $i \in[1, k]$. Let c be a point in $C \cap P_{i}^{*}$. It holds that:

$$
\begin{aligned}
\operatorname{dist}_{C_{\text {ours }}}(p) & \leq \operatorname{dist}(c, p) \\
& \leq \operatorname{dist}\left(c, c^{*}\right)+\operatorname{dist}\left(c^{*}, p\right) \\
& \leq 2 \cdot \operatorname{pen}\left(C^{*}\right)
\end{aligned}
$$

Therefore:

$$
\operatorname{pen}\left(C_{\text {ours }}\right)=\max _{p \in P} \operatorname{dist}_{C_{\text {ours }}}(p) \leq 2 \cdot \operatorname{pen}\left(C^{*}\right) .
$$

Case 2: $C_{\text {ours }}$ has no point in at least one of $P_{1}^{*}, \ldots, P_{k}^{*}$. Hence, one of $P_{1}^{*}, \ldots, P_{k}^{*}$ must cover at least two points - say c_{1} and c_{2} - of $C_{\text {ours }}$. It thus follows that

$$
\operatorname{dist}\left(c_{1}, c_{2}\right) \leq \operatorname{dist}\left(c_{1}, c_{i}^{*}\right)+\operatorname{dist}\left(c_{2}, c_{i}^{*}\right) \leq 2 \cdot \operatorname{pen}\left(C^{*}\right) .
$$

Next, we prove:
Lemma: For any point $p \in P, \operatorname{dist}_{C_{\text {ours }}}(p) \leq \operatorname{dist}\left(c_{1}, c_{2}\right)$.
The claim implies pen $\left(C_{\text {ours }}\right) \leq 2 \cdot \operatorname{pen}\left(C^{*}\right)$.

Proof of the Lemma:

W.l.o.g., assume that c_{2} was picked after c_{1} by our algorithm. Consider the moment right before c_{2} was picked. At that moment, the set C maintained by our algorithm was a proper subset of $C_{\text {ours }}$.

From the fact that c_{2} was the next point picked, we know $\operatorname{dist}_{C}(p) \leq \operatorname{dist}_{C}\left(c_{2}\right)$.

Because $c_{1} \in C$, it holds that $\operatorname{dist}_{C}\left(c_{2}\right) \leq \operatorname{dist}\left(c_{1}, c_{2}\right)$.

The lemma then follows because

$$
\operatorname{dist}_{C_{\text {ours }}}(p) \leq \operatorname{dist}_{C}(p) \leq \operatorname{dist}_{C}\left(c_{2}\right) \leq \operatorname{dist}\left(c_{1}, c_{2}\right)
$$

