Approximation Algorithms 1: Vertex Cover and MAX-3SAT

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Vertex Cover and MAX-3-CNF Satisfiability

ъ

1/1

・ 同 ト ・ ヨ ト ・ ヨ ト

In computer science, there is a set of **NP-hard** problems such that

- nobody has found a polynomial-time algorithm for any of those problems;
- no polynomial-time algorithms can exist for any of those problems unless P = NP.
 - \mathcal{P} = the set of problems that can be solved in polynomial time on a **deterministic** Turing machine
 - NP = the set of problems that can be solved in polynomial time on a **non-deterministic** Turing machine

Turing machines are formalized in CSCI3130 (Formal Languages and Automata Theory), and so is the notion of NP-hard.

Whether $\mathcal{P} = \mathcal{NP}$ is still unsolved to this day.

2/1

4 A N 4 B N 4 B N

What can we do if a problem is NP-hard?

The rest of the course will focus on a principled approach for tackling NP-hard problems: **approximation**.

In many problems, even though an optimal solution may be expensive to find, we can find **near-optimal** solutions efficiently.

Next, we will see two examples: vertex cover and MAX-3SAT.

3/1

The Vertex Cover Problem

Vertex Cover and MAX-3-CNF Satisfiability

G = (V, E) is a simple undirected graph. A subset $S \subseteq V$ is a **vertex cover** of G if every edge $\{u, v\} \in E$ is incident to at least one vertex in S.

The V.C. Problem: Find a vertex cover of the smallest size.

Yufei Tao

Vertex Cover and MAX-3-CNF Satisfiability

ъ

5/1

4月 1 4 3 1 4 3 1

The vertex cover problem is NP-hard.

- No one has found an algorithm solving the problem in time polynomial in |V|.
- Such algorithms cannot exist if $\mathcal{P} \neq \mathcal{NP}$.

ъ

6/1

(4 戸) (4 日) (4 日)

Approximation Algorithms

 \mathcal{A} = an algorithm that, given any legal input G = (V, E), returns a vertex cover of G.

 OPT_G = the smallest size of all the vertex covers of G.

 \mathcal{A} is a ρ -approximate algorithm for the vertex cover problem if, for any legal input G = (V, E), \mathcal{A} can return a vertex cover with size at most $\rho \cdot OPT_G$.

The value ρ is the **approximation ratio**. We say that A achieves an approximation ratio of ρ .

7/1

Consider the following algorithm.

```
Input: G = (V, E)

S = \emptyset

while E is not empty do

pick an arbitrary edge \{u, v\} in E

add u, v to S

remove from E all the edges of u and all the edges of v

return S
```

It is easy to show:

- *S* is a vertex cover of *G*;
- The algorithm runs in time polynomial to |V| and |E|.

We will prove later that the algorithm is 2-approximate.

-

8/1

イロト 不得 とくほ とくほう

Example: Suppose we start by picking edge $\{b, c\}$. Then, $S = \{b, c\}$ and $E = \{\{a, e\}, \{a, d\}, \{d, e\}, \{d, f\}\}$. Any edge in *E* can then be chosen. Suppose we pick $\{a, e\}$. Then, $S = \{a, b, c, e\}$ and $E = \{\{d, f\}\}$. Finally, pick $\{d, f\}$. $S = \{a, b, c, d, e, f\}$ and $E = \emptyset$.

Vertex Cover and MAX-3-CNF Satisfiability

-

9/1

(日) ・ モート ・ モート

Theorem 1: The algorithm returns a set of at most $2 \cdot OPT_G$ vertices.

Let M be the set of edges picked.

Example: In the previous example, $M = \{\{b, c\}, \{a, e\}, \{d, f\}\}$.

Vertex Cover and MAX-3-CNF Satisfiability

10/1

イロト イポト イラト イラト

Lemma 1: The edges in *M* do not share any vertices.

Proof: Suppose that M has edges e_1 and e_2 both incident to a vertex v. W.l.o.g., assume that e_1 was picked before e_2 . After picking e_1 , the algorithm deleted all the edges of v, because of which e_2 could not have been picked, giving a contradiction.

Lemma 2: $|M| \leq OPT_G$.

Proof: Any vertex cover must include at least one vertex of each edge in M. $|M| \leq OPT$ follows from Lemma 1.

Theorem 1 holds because the algorithm returns exactly 2|M| vertices.

11/1

(人間) トイヨト イヨト

The MAX-3SAT Problem

æ -

12/1

・ロト ・部ト ・モト ・モト

A variable: a boolean unknown x whose value is 0 or 1. A literal: a variable x or its negation \bar{x} . A clause: the OR of 3 literals with different variables.

S = a set of clauses \mathcal{X} = the set of variables appearing in at least one clause of SA **truth assignment** of S: a function from \mathcal{X} to $\{0,1\}$.

A truth assignment f satisfies a clause in S if the clause evaluates to 1 under f.

The MAX-3SAT Problem: Let S be a set of n clauses. Find a truth assignment of S to maximize the number of clauses satisfied.

13/1

伺 ト イヨト イヨト

Yufei Tao

Vertex Cover and MAX-3-CNF Satisfiability

э.

14/1

イロト イポト イラト イラト

The MAX-3SAT problem is NP-hard.

- No one has found an algorithm solving the problem in time polynomial in *n*.
- Such algorithms cannot exist if $\mathcal{P} \neq \mathcal{NP}$.

э

15/1

・ロト ・同ト ・ヨト ・ヨト

Approximation Algorithms

A = an algorithm that, given any legal input S, returns a truth assignment of S.

 OPT_S = the largest number of clauses that a truth assignment of S can satisfy.

 Z_S = the number of clauses satisfied by the truth assignment \mathcal{A} returns.

• Z_S is a random variable if A is randomized.

 \mathcal{A} is a **randomized** ρ -**approximate algorithm** for MAX-3SAT if $\mathbf{E}[Z_S] \ge \rho \cdot OPT_S$ holds for any legal input S.

The value ρ is the **approximation ratio**.

We also say that $\mathcal A$ achieves an approximation ratio of ρ in expectation.

16/1

(日) (周) (王) (王)

Consider the following algorithm.

```
Input: a set S of clauses with variable set \mathcal{X}
```

```
for each variable x \in \mathcal{X} do
toss a fair coin
if the coin comes up heads then x \leftarrow 1
else x \leftarrow 0
```

It is clear that the algorithm runs in O(n) time.

Next, we show that the algorithm achieves an approximation ratio 7/8 in expectation.

17/1

Theorem 2: The algorithm produces a truth assignment that satisfies $\frac{7}{8}n$ clauses in expectation.

Proof: It suffices to show that each clause is satisfied with probability 7/8. W.l.o.g., suppose that the clause is $x_1 \lor x_2 \lor x_3$. The clause is 0 if and only if x_1 , x_2 , and x_3 are all 0. The probability for $x_1 = x_2 = x_3 = 0$ is 1/8.

Think: What about a clause like $x_1 \lor x_2 \lor \overline{x_3}$?

18/1