Approximation Algorithms 1: Vertex Cover and MAX-3SAT

Yufei Tao
Department of Computer Science and Engineering Chinese University of Hong Kong

In computer science, there is a set of NP-hard problems such that

- nobody has found a polynomial-time algorithm for any of those problems;
- no polynomial-time algorithms can exist for any of those problems unless $\mathcal{P}=\mathcal{N} \mathcal{P}$.
- $\mathcal{P}=$ the set of problems that can be solved in polynomial time on a deterministic Turing machine
- $\mathcal{N P}=$ the set of problems that can be solved in polynomial time on a non-deterministic Turing machine

Turing machines are formalized in CSCI3130 (Formal Languages and Automata Theory), and so is the notion of NP-hard.

Whether $\mathcal{P}=\mathcal{N} \mathcal{P}$ is still unsolved to this day.

What can we do if a problem is NP-hard?

The rest of the course will focus on a principled approach for tackling NP-hard problems: approximation.

In many problems, even though an optimal solution may be expensive to find, we can find near-optimal solutions efficiently.

Next, we will see two examples: vertex cover and MAX-3SAT.

The Vertex Cover Problem

$G=(V, E)$ is a simple undirected graph.
A subset $S \subseteq V$ is a vertex cover of G if every edge $\{u, v\} \in E$ is incident to at least one vertex in S.

The V.C. Problem: Find a vertex cover of the smallest size.

Example:

An optimal solution is $\{a, f, c, e\}$.

The vertex cover problem is NP-hard.

- No one has found an algorithm solving the problem in time polynomial in $|V|$.
- Such algorithms cannot exist if $\mathcal{P} \neq \mathcal{N P}$.

Approximation Algorithms

$\mathcal{A}=$ an algorithm that, given any legal input $G=(V, E)$, returns a vertex cover of G.
$O P T_{G}=$ the smallest size of all the vertex covers of G.
\mathcal{A} is a ρ-approximate algorithm for the vertex cover problem if, for any legal input $G=(V, E), \mathcal{A}$ can return a vertex cover with size at most $\rho \cdot O P T_{G}$.

The value ρ is the approximation ratio.
We say that \mathcal{A} achieves an approximation ratio of ρ.

Consider the following algorithm.
Input: $G=(V, E)$
$S=\emptyset$
while E is not empty do
pick an arbitrary edge $\{u, v\}$ in E
add u, v to S
remove from E all the edges of u and all the edges of v return S

It is easy to show:

- S is a vertex cover of G;
- The algorithm runs in time polynomial to $|V|$ and $|E|$.

We will prove later that the algorithm is 2 -approximate.

Example:

Suppose we start by picking edge $\{b, c\}$. Then, $S=\{b, c\}$ and $E=\{\{a, e\},\{a, d\},\{d, e\},\{d, f\}\}$.
Any edge in E can then be chosen. Suppose we pick $\{a, e\}$. Then, $S=\{a, b, c, e\}$ and $E=\{\{d, f\}\}$.

Finally, pick $\{d, f\}$.
$S=\{a, b, c, d, e, f\}$ and $E=\emptyset$.

Theorem 1: The algorithm returns a set of at most $2 \cdot O P T_{G}$ vertices.

Let M be the set of edges picked.

Example: In the previous example, $M=\{\{b, c\},\{a, e\},\{d, f\}\}$.

Lemma 1: The edges in M do not share any vertices.
Proof: Suppose that M has edges e_{1} and e_{2} both incident to a vertex v. W.I.o.g., assume that e_{1} was picked before e_{2}. After picking e_{1}, the algorithm deleted all the edges of v, because of which e_{2} could not have been picked, giving a contradiction.

Lemma 2: $|M| \leq O P T_{G}$.
Proof: Any vertex cover must include at least one vertex of each edge in M. $|M| \leq O P T$ follows from Lemma 1 .

Theorem 1 holds because the algorithm returns exactly $2|M|$ vertices.

The MAX-3SAT Problem

A variable: a boolean unknown x whose value is 0 or 1 .
A literal: a variable x or its negation \bar{x}.
A clause: the OR of 3 literals with different variables.
$S=$ a set of clauses
$\mathcal{X}=$ the set of variables appearing in at least one clause of S
A truth assignment of S : a function from \mathcal{X} to $\{0,1\}$.
A truth assignment f satisfies a clause in S if the clause evaluates to 1 under f.

The MAX-3SAT Problem: Let S be a set of n clauses. Find a truth assignment of S to maximize the number of clauses satisfied.

Example:

$$
\begin{gathered}
S=\left\{x_{1} \vee x_{2} \vee x_{3},\right. \\
x_{1} \vee x_{2} \vee \overline{x_{3}}, \\
x_{1} \vee \overline{x_{2}} \vee x_{3}, \\
x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}, \\
\overline{x_{1}} \vee x_{3} \vee x_{4}, \\
\overline{x_{1}} \vee x_{3} \vee \bar{x}_{4}, \\
\overline{x_{1}} \vee \overline{x_{3}} \vee x_{4}, \\
\left.\overline{x_{1}} \vee \overline{x_{3}} \vee \bar{x}_{4}\right\} .
\end{gathered}
$$

$n=8$ and $\mathcal{X}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.

The truth assignment $x_{1}=x_{2}=x_{3}=x_{4}=1$ satisfies 7 clauses. It is impossible to satisfy 8.

The MAX-3SAT problem is NP-hard.

- No one has found an algorithm solving the problem in time polynomial in n.
- Such algorithms cannot exist if $\mathcal{P} \neq \mathcal{N P}$.

Approximation Algorithms

$\mathcal{A}=$ an algorithm that, given any legal input S, returns a truth assignment of S.
$O P T_{S}=$ the largest number of clauses that a truth assignment of S can satisfy.
$Z_{S}=$ the number of clauses satisfied by the truth assignment \mathcal{A} returns.

- Z_{S} is a random variable if \mathcal{A} is randomized.
\mathcal{A} is a randomized ρ-approximate algorithm for MAX-3SAT if $E\left[Z_{S}\right] \geq \rho \cdot O P T_{S}$ holds for any legal input S.

The value ρ is the approximation ratio.
We also say that \mathcal{A} achieves an approximation ratio of ρ in expectation.

Consider the following algorithm.
Input: a set S of clauses with variable set \mathcal{X}
for each variable $x \in \mathcal{X}$ do
toss a fair coin
if the coin comes up heads then $x \leftarrow 1$
else $x \leftarrow 0$
It is clear that the algorithm runs in $O(n)$ time.
Next, we show that the algorithm achieves an approximation ratio $7 / 8$ in expectation.

Theorem 2: The algorithm produces a truth assignment that satisfies $\frac{7}{8} n$ clauses in expectation.

Proof: It suffices to show that each clause is satisfied with probability $7 / 8$. W.l.o.g., suppose that the clause is $x_{1} \vee x_{2} \vee x_{3}$. The clause is 0 if and only if x_{1}, x_{2}, and x_{3} are all 0 . The probability for $x_{1}=x_{2}=x_{3}=0$ is $1 / 8$.

Think: What about a clause like $x_{1} \vee x_{2} \vee \overline{x_{3}}$?

