Review: Single Source Shortest Paths with Non-Negative Weights

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong

We will now commence our discussion on the single source shortest path (SSSP) problem. This lecture will start with Dijkstra's algorithm, which should have been covered in CSCI2100.

Weighted Graphs

Let $G=(V, E)$ be a simple directed graph.
Let w be a function that maps each edge $e \in E$ to a non-negative integer value $w(e)$, which we call the weight of e.
G and w together define a weighted simple directed graph.

Example

The integer on each edge indicates its weight. For example, $w(d, g)=1$, $w(g, f)=2$, and $w(c, e)=10$.

Shortest Path

Consider a path in $G:\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{\ell}, v_{\ell+1}\right)$, for some integer $\ell \geq 1$. We define the path's length as

$$
\sum_{i=1}^{\ell} w\left(v_{i}, v_{i+1}\right)
$$

A shortest path from u to v has the minimum length among all the paths from u to v. Denote by $\operatorname{spdist}(u, v)$ the length of a shortest path from u to v.

If v is unreachable from $u, \operatorname{spdist}(u, v)=\infty$.

Single Source Shortest Path (SSSP) with Non-Negative Weights

Let $G=(V, E)$ be a simple directed graph, where function w maps every edge of E to a non-negative value. Given a source vertex s in V, we want to find a shortest path from s to t for every vertex $t \in V$ reachable from s.

The output is a shortest path tree T :

- The vertex set of T is V.
- The root of T is s.
- For each node $u \in V$, the root-to- u path of T is a shortest path from s to u in G.

Example

A shortest path tree for source vertex c:

Edge Relaxation

For every vertex $v \in V$, we will - at all times - maintain a value $\operatorname{dist}(v)$ equal to the shortest path length from s to v found so far.

Relaxing an edge (u, v) means:

- If $\operatorname{dist}(v) \leq \operatorname{dist}(u)+w(u, v)$, do nothing;
- Otherwise, reduce $\operatorname{dist}(v)$ to $\operatorname{dist}(u)+w(u, v)$.

Dijkstra's Algorithm

(1) Set parent $(v) \leftarrow$ nil for all vertices $v \in V$
(2) Set $\operatorname{dist}(s) \leftarrow 0$ and $\operatorname{dist}(v) \leftarrow \infty$ for each vertex $v \in V \backslash\{s\}$
(3) Set $S \leftarrow V$
(3) Repeat the following until S is empty:

- Remove from S the vertex u with the smallest $\operatorname{dist}(u)$.
- Relax every outgoing edge (u, v) of u. If $\operatorname{dist}(v)$ drops after the relaxation, set $\operatorname{parent}(v) \leftarrow u$.

Example

Suppose that the source vertex is c.

vertex v	$\operatorname{dist}(v)$	parent (v)
a	∞	nil
b	∞	nil
c	0	nil
d	∞	nil
e	∞	nil
f	∞	nil
g	∞	nil
h	∞	nil
i	∞	nil

$S=\{a, b, c, d, e, f, g, h, i\}$.

Example

Relax the out-going edges of c.

vertex v	$\operatorname{dist}(v)$	parent (v)
a	∞	nil
b	∞	nil
c	0	nil
d	2	c
e	10	c
f	∞	nil
g	∞	nil
h	∞	nil
i	∞	nil

$S=\{a, b, d, e, f, g, h, i\}$.

Example

Relax the out-going edges of d.

vertex v	$\operatorname{dist}(v)$	parent (v)
a	8	d
b	∞	nil
c	0	nil
d	2	c
e	10	c
f	∞	nil
g	3	d
h	∞	nil
i	∞	nil

$S=\{a, b, e, f, g, h, i\}$.

Example

Relax the out-going edges of g.

vertex v	$\operatorname{dist}(v)$	parent (v)
a	8	d
b	∞	nil
c	0	nil
d	2	c
e	10	c
f	5	g
g	3	d
h	∞	nil
i	4	g

$S=\{a, b, e, f, h, i\}$.

Example

Relax the out-going edges of i.

vertex v	$\operatorname{dist}(v)$	parent (v)
a	8	d
b	∞	nil
c	0	nil
d	2	c
e	10	c
f	5	g
g	3	d
h	∞	nil
i	4	g

$S=\{a, b, e, f, h\}$.

Example

Relax the out-going edges of f.

vertex v	$\operatorname{dist}(v)$	parent (v)
a	8	d
b	∞	nil
c	0	nil
d	2	c
e	6	f
f	5	g
g	3	d
h	∞	nil
i	4	g

$S=\{a, b, e, h\}$.

Example

Relax the out-going edges of e.

vertex v	$\operatorname{dist}(v)$	parent (v)
a	8	d
b	∞	nil
c	0	nil
d	2	c
e	6	f
f	5	g
g	3	d
h	∞	nil
i	4	g

$S=\{a, b, h\}$.

Example

Relax the out-going edges of a.

vertex v	$\operatorname{dist}(v)$	parent (v)
a	8	d
b	9	a
c	0	nil
d	2	c
e	6	f
f	5	g
g	3	d
h	∞	nil
i	4	g

$S=\{b, h\}$.

Example

Relax the out-going edges of b.

vertex v	$\operatorname{dist}(v)$	parent (v)
a	8	d
b	9	a
c	0	nil
d	2	c
e	6	f
f	5	g
g	3	d
h	∞	nil
i	4	g

$S=\{h\}$.

Example

Relax the out-going edges of h.

vertex v	$\operatorname{dist}(v)$	parent (v)
a	8	d
b	9	a
c	0	nil
d	2	c
e	6	f
f	5	g
g	3	d
h	∞	nil
i	4	g

$S=\{ \}$.
All the shortest path distances are now final.

Constructing the Shortest Path Tree

For every vertex v, if $u=\operatorname{parent}(v)$ is not nil, then make v a child of u.

vertex v	parent (v)
a	d
b	a
c	nil
d	c
e	f
f	g
g	d
h	nil
i	g

You should be able to implement Dijkstra's algorithm to make sure that it runs in $O((|V|+|E|) \cdot \log |V|)$ time.

- Using advanced (graduate-level) data structures, we can reduce the time to $O(|V| \log |V|+|E|)$.

Dijkstra's algorithm does not work if edges can take negative weights.

