
1/14

Dynamic Programming 5: Optimal BST

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Dynamic Programming 5: Optimal BST



2/14

Review: Binary Search Tree (BST)

20

10 40

30

Each node stores a key.

The key of an internal node u is larger than any key in the left
subtree of u, and smaller than any key in the right subtree of u.

Yufei Tao Dynamic Programming 5: Optimal BST



3/14

Review: Binary Search Tree (BST)

20

10 40

30

The level of a node u in a BST T — denoted as levelT (u) —
equals the number of edges on the path from the root to u.

The level of the root is 0.

The depth of a tree is the maximum level of the nodes in the tree.

Searching for a node u incurs cost proportional to 1 + levelT (u).

Yufei Tao Dynamic Programming 5: Optimal BST



4/14

Let S be a set of n integers. We have learned (from CSCI2100) that a
balanced BST on S has depth O(log n). This is good if all the integers in
S are searched with equal probabilities.

In practice, not all keys are equally important: some are searched more
often than others. This gives rise to an interesting question:

If we know the search frequencies of the integers in S , how to build
a better BST to minimize the average search cost?

Yufei Tao Dynamic Programming 5: Optimal BST



5/14

Example:

20

10 40

30

Suppose that the search frequencies of 10, 20, 30, and 40 are
40%, 15%, 35%, and 10%, respectively. Then, the average cost of
searching for a key in the BST equals:

freq(10) · cost(10) + freq(20) · cost(20) +
freq(30) · cost(30) + freq(40) · cost(40)

= 40% · 2 + 15% · 1 + 35% · 3 + 10% · 2
= 2.2.

Yufei Tao Dynamic Programming 5: Optimal BST



6/14

The Optimal BST Problem

Input:

A set S of n integers: {1, 2, ..., n};

An array W where W [i ] (1 ≤ i ≤ n) stores a positive integer weight.

Output: A BST T on S with the smallest average cost

avgcost(T ) =
n∑

i=1

W [i ] · costT (i).

where costT (i) = 1 + levelT (i) is the number of nodes accessed to find

the key i in T .

Yufei Tao Dynamic Programming 5: Optimal BST



7/14

We will solve a more general version of the problem.

Input:

S and W same as before;

Integers a, b satisfying 1 ≤ a ≤ b ≤ n.

Output: A BST T on {a, a+ 1, ..., b} with the smallest average cost:

avgcost(T ) =
b∑

i=a

W [i ] · costT (i).

Yufei Tao Dynamic Programming 5: Optimal BST



8/14

Fact: The root of T must have a key r ∈ [a, b].

After the root key r is fixed, we know:

the root’s left subtree is a BST T1 on S1 = {a, ..., r − 1}, and

the root’s right subtree is a BST T2 on S2 = {r + 1, ..., b}.

r

T1 T2

Lemma: Let T , T1, and T2 be defined as above. Then:

avgcost(T ) =

(
b∑

i=a

W [i ]

)
+ avgcost(T1) + avgcost(T2).

Yufei Tao Dynamic Programming 5: Optimal BST



9/14

Proof:

avgcost(T )

=
b∑

i=a

W [i ] · costT (i) =
b∑

i=a

W [i ] · (1 + levelT (i))

=

(
b∑

i=a

W [i ]

)
+

b∑
i=a

W [i ] · levelT (i)

=

(
b∑

i=a

W [i ]

)
+

(
r−1∑
i=a

W [i ] · levelT (i)

)
+

(
b∑

i=r+1

W [i ] · levelT (i)

)

(Continued on the next slide)

r

T1 T2

Yufei Tao Dynamic Programming 5: Optimal BST



10/14

=

(
b∑

i=a

W [i ]

)
+(

r−1∑
i=a

W [i ] · (1 + levelT1(i))

)
+

(
b∑

i=r+1

W [i ] · (1 + levelT2(i))

)

=

(
b∑

i=a

W [i ]

)
+

(
r−1∑
i=a

W [i ] · costT1(i)

)
+

(
b∑

i=r+1

W [i ] · costT2(i)

)

=

(
b∑

i=a

W [i ]

)
+ avgcost(T1) + avgcost(T2).

r

T1 T2

Yufei Tao Dynamic Programming 5: Optimal BST



11/14

Define optavg(a, b) as

0, if a > b;

the smallest average cost of a BST on {a, a+ 1, ..., b}, otherwise.

Define optavg(a, b | r) as the optimal average cost of a BST, on
condition that the BST has r ∈ [a, b] as the key of the root.

By the previous lemma, we have:

optavg(a, b | r)

=

(
b∑

i=a

W [i ]

)
+ optavg(a, r − 1) + optavg(r + 1, b).

Yufei Tao Dynamic Programming 5: Optimal BST



12/14

Example: S = {1, 2, 3, 4}; W = (40, 15, 35, 10).

Consider choosing 2 as the root key.

optavg(1, 4 | 2)

=

(
4∑

i=1

W [i ]

)
+ optavg(1, 1) + optavg(3, 4)

= 100 + 40 + 55 = 195.

Hence, among all BSTs with root key 2, the best BST has
average cost 195.

Yufei Tao Dynamic Programming 5: Optimal BST



13/14

The recursive structure of the problem:

optavg(a, b)

=
b

min
r=a

optavg(a, b | r)

=

(
b∑

i=a

W [i ]

)
+

b
min
r=a

{
optavg(a, r − 1) + optavg(r + 1, b)

}
.

With dynamic programming, we can compute optavg(1, n) in
O(n3) time (left as a special exercise).

Yufei Tao Dynamic Programming 5: Optimal BST



14/14

Strictly speaking, we have not produced the optimal BST yet. How-
ever, fixing the issue should be fairly standard to you at this mo-
ment: the piggyback technique allows you to build the tree in the
same time complexity as computing opt(1, n). This is left as a
special exercise.

Yufei Tao Dynamic Programming 5: Optimal BST


