Dynamic Programming 5: Optimal BST

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong

Review: Binary Search Tree (BST)

- Each node stores a key.
- The key of an internal node u is larger than any key in the left subtree of u, and smaller than any key in the right subtree of u.

Review: Binary Search Tree (BST)

- The level of a node u in a BST T - denoted as level $T_{T}(u)$ equals the number of edges on the path from the root to u.
- The level of the root is 0 .
- The depth of a tree is the maximum level of the nodes in the tree.
- Searching for a node u incurs cost proportional to $1+\operatorname{level}_{T}(u)$.

Let S be a set of n integers. We have learned (from CSCl 2100) that a balanced BST on S has depth $O(\log n)$. This is good if all the integers in S are searched with equal probabilities.

In practice, not all keys are equally important: some are searched more often than others. This gives rise to an interesting question:

If we know the search frequencies of the integers in S, how to build a better BST to minimize the average search cost?

Example:

Suppose that the search frequencies of $10,20,30$, and 40 are $40 \%, 15 \%, 35 \%$, and 10%, respectively. Then, the average cost of searching for a key in the BST equals:

$$
\begin{aligned}
& \text { freq }(10) \cdot \operatorname{cost}(10)+\operatorname{freq}(20) \cdot \operatorname{cost}(20)+ \\
& \text { freq }(30) \cdot \operatorname{cost}(30)+\operatorname{freq}(40) \cdot \operatorname{cost}(40) \\
= & 40 \% \cdot 2+15 \% \cdot 1+35 \% \cdot 3+10 \% \cdot 2 \\
= & 2.2 .
\end{aligned}
$$

The Optimal BST Problem

Input:

- A set S of n integers: $\{1,2, \ldots, n\}$;
- An array W where $W[i](1 \leq i \leq n)$ stores a positive integer weight.

Output: A BST T on S with the smallest average cost

$$
\operatorname{avgcost}(T)=\sum_{i=1}^{n} W[i] \cdot \operatorname{cost}_{T}(i)
$$

where $\operatorname{cost}_{T}(i)=1+$ level $_{T}(i)$ is the number of nodes accessed to find the key i in T.

We will solve a more general version of the problem.

Input:

- S and W same as before;
- Integers a, b satisfying $1 \leq a \leq b \leq n$.

Output: A BST T on $\{a, a+1, \ldots, b\}$ with the smallest average cost:

$$
\operatorname{avgcost}(T)=\sum_{i=a}^{b} W[i] \cdot \operatorname{cost}_{T}(i)
$$

Fact: The root of T must have a key $r \in[a, b]$.
After the root key r is fixed, we know:

- the root's left subtree is a BST T_{1} on $S_{1}=\{a, \ldots, r-1\}$, and
- the root's right subtree is a BST T_{2} on $S_{2}=\{r+1, \ldots, b\}$.

Lemma: Let T, T_{1}, and T_{2} be defined as above. Then:

$$
\operatorname{avgcost}(T)=\left(\sum_{i=a}^{b} W[i]\right)+\operatorname{avgcost}\left(T_{1}\right)+\operatorname{avgcost}\left(T_{2}\right) .
$$

Proof:

$$
\begin{aligned}
& \operatorname{avg} \operatorname{cost}(T) \\
= & \sum_{i=a}^{b} W[i] \cdot \operatorname{cost}_{T}(i)=\sum_{i=a}^{b} W[i] \cdot\left(1+\text { level }_{T}(i)\right) \\
= & \left(\sum_{i=a}^{b} W[i]\right)+\sum_{i=a}^{b} W[i] \cdot \text { level }_{T}(i) \\
= & \left(\sum_{i=a}^{b} W[i]\right)+\left(\sum_{i=a}^{r-1} W[i] \cdot \text { level }_{T}(i)\right)+\left(\sum_{i=r+1}^{b} W[i] \cdot \operatorname{level}_{T}(i)\right)
\end{aligned}
$$

(Continued on the next slide)

$$
\begin{aligned}
= & \left(\sum_{i=a}^{b} W[i]\right)+ \\
& \left(\sum_{i=a}^{r-1} W[i] \cdot\left(1+\operatorname{level} T_{T_{1}}(i)\right)\right)+\left(\sum_{i=r+1}^{b} W[i] \cdot\left(1+\operatorname{level} T_{2}(i)\right)\right) \\
= & \left(\sum_{i=a}^{b} W[i]\right)+\left(\sum_{i=a}^{r-1} W[i] \cdot \operatorname{cost} T_{1}(i)\right)+\left(\sum_{i=r+1}^{b} W[i] \cdot \operatorname{cost}_{T_{2}}(i)\right) \\
= & \left(\sum_{i=a}^{b} W[i]\right)+\arg \operatorname{cost}\left(T_{1}\right)+\operatorname{avg} \operatorname{cost}\left(T_{2}\right) .
\end{aligned}
$$

Define $\operatorname{optavg}(a, b)$ as

- 0 , if $a>b$;
- the smallest average cost of a BST on $\{a, a+1, \ldots, b\}$, otherwise.

Define optavg $(a, b \mid r)$ as the optimal average cost of a BST, on condition that the BST has $r \in[a, b]$ as the key of the root.

By the previous lemma, we have:

$$
\begin{aligned}
& \operatorname{optavg}(a, b \mid r) \\
= & \left(\sum_{i=a}^{b} W[i]\right)+\operatorname{optavg}(a, r-1)+\operatorname{optavg}(r+1, b) .
\end{aligned}
$$

Example: $S=\{1,2,3,4\} ; W=(40,15,35,10)$.
Consider choosing 2 as the root key.

$$
\begin{aligned}
& \operatorname{optavg}(1,4 \mid 2) \\
= & \left(\sum_{i=1}^{4} W[i]\right)+\operatorname{optavg}(1,1)+\operatorname{optavg}(3,4) \\
= & 100+40+55=195 .
\end{aligned}
$$

Hence, among all BSTs with root key 2, the best BST has average cost 195.

The recursive structure of the problem:

$$
\begin{aligned}
& \operatorname{optavg}(a, b) \\
= & \min _{r=a}^{b} \operatorname{optavg}(a, b \mid r) \\
= & \left(\sum_{i=a}^{b} W[i]\right)+\min _{r=a}^{b}\{\operatorname{optavg}(a, r-1)+\operatorname{optavg}(r+1, b)\} .
\end{aligned}
$$

With dynamic programming, we can compute $\operatorname{optavg}(1, n)$ in $O\left(n^{3}\right)$ time (left as a special exercise).

Strictly speaking, we have not produced the optimal BST yet. However, fixing the issue should be fairly standard to you at this moment: the piggyback technique allows you to build the tree in the same time complexity as computing opt $(1, n)$. This is left as a special exercise.

