Dynamic Programming 1: Pitfall of Recursion

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong

Today, we will start a series of lectures on dynamic programming, which is a technique for accelerating recursive algorithms.

Remark: Despite the word "programming", the technique has nothing to do with programming languages.

Problem: Let A be an array of n positive integers.
Consider function

$$
f(k)= \begin{cases}0 & \text { if } k=0 \\ \max _{i=1}^{k}(A[i]+f(k-i)) & \text { if } 1 \leq k \leq n\end{cases}
$$

Goal: Compute $f(n)$.

Example: Consider the following array A :

i	1	2	3	4
$A[i]$	1	5	8	9

Then, $f(1)=1, f(2)=5, f(3)=8$, and $f(4)=10$.

Pitfall of Recursion

Consider the following recursive algorithm for computing $f(k)$.
$\mathbf{f}(k)$

1. if $k=0$ then return 0
2. ans $\leftarrow-\infty$
3. for $i \leftarrow 1$ to k do
4. $\quad t m p \leftarrow A[i]+\mathbf{f}(k-i)$
5. if $t m p>$ ans then ans $\leftarrow t m p$
6. return ans

Computing $f(n)$ with the above algorithm incurs running time $\Omega\left(2^{n}\right)$ (left as a regular exercise).

Pitfall of Recursion
$\mathbf{f}(k)$

1. if $k=0$ then return 0
2. ans $\leftarrow-\infty$
3. for $i \leftarrow 1$ to k do
4. $\quad t m p \leftarrow A[i]+\mathbf{f}(k-i)$
5. if $t m p>$ ans then ans $\leftarrow t m p$
6. return ans

Why is the algorithm so slow?
Answer: It computes $f(x)$ for the same x repeatedly!

How many times do we need to call $\mathbf{f}(0)$ in computing $f(1), f(2)$, \ldots, and $f(6)$, respectively?

Pitfall of recursion:

A recursive algorithm does considerable redundant work if the same subproblem is encountered over and over again.

Antidote: dynamic programming.

Principle of dynamic programming
Resolve subproblems according to a certain order. Remember the output of every subproblem to avoid re-computation.

Problem: Let A be an array of n positive integers.

$$
f(k)= \begin{cases}0 & \text { if } k=0 \\ \max _{i=1}^{k}(A[i]+f(k-i)) & \text { if } 1 \leq k \leq n\end{cases}
$$

Goal: Compute $f(n)$.
Order of subproblems: $f(1), \ldots, f(n)$.
Resolve subproblem $f(1)$: $O(1)$ time
Resolve subproblem $f(2)$: $O(2)$ time, given $f(1)$.
Resolve subproblem $f(k)$: $O(k)$ time, given $f(1), \ldots, f(k-1)$.
Resolve subproblem $f(n)$: $O(n)$ time, given $f(1), \ldots, f(n-1)$.
In total: $O\left(n^{2}\right)$ time.

Pseudocode of our algorithm:
dyn-prog

1. initialize an array ans of size n
2. define special value ans $[0] \leftarrow 0$
3. for $k \leftarrow 1$ to n do
/* assuming $f(0), f(1), \ldots, f(k-1)$ ready, compute $f(k)^{* /}$
4. $\quad a n s[k] \leftarrow-\infty$
5. \quad for $i \leftarrow 1$ to k do
6. $\quad t m p \leftarrow A[i]+a n s[k-i]$
7. if $t m p>a n s[k]$ then $a n s[k] \leftarrow t m p$

Time complexity: $O\left(n^{2}\right)$.

