Dynamic Programming 1: Pitfall of Recursion

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Today, we will start a series of lectures on **dynamic programming**, which is a technique for accelerating recursive algorithms.

Remark: Despite the word "programming", the technique has nothing to do with programming languages.

Problem: Let A be an array of n positive integers.

Consider function

$$f(k) = \begin{cases} 0 & \text{if } k = 0\\ \max_{i=1}^{k} (A[i] + f(k-i)) & \text{if } 1 \le k \le n \end{cases}$$

Goal: Compute f(n).

Example: Consider the following array A:

Then, f(1) = 1, f(2) = 5, f(3) = 8, and f(4) = 10.

Pitfall of Recursion

Consider the following recursive algorithm for computing f(k).

- 1. if k = 0 then return 0
- 2. ans $\leftarrow -\infty$
- 3. **for** $i \leftarrow 1$ to k **do**
- 4. $tmp \leftarrow A[i] + \mathbf{f}(k-i)$
- 5. **if** tmp > ans **then** $ans \leftarrow tmp$
- 6. return ans

Computing f(n) with the above algorithm incurs running time $\Omega(2^n)$ (left as a regular exercise).

Pitfall of Recursion

- 1. if k = 0 then return 0
- 2. $ans \leftarrow -\infty$
- 3. **for** $i \leftarrow 1$ to k **do**
- 4. $tmp \leftarrow A[i] + \mathbf{f}(k-i)$
- 5. **if** tmp > ans **then** $ans \leftarrow tmp$
- 6. return ans

Why is the algorithm so slow?

Answer: It computes f(x) for the same x repeatedly!

How many times do we need to call f(0) in computing f(1), f(2), ..., and f(6), respectively?

Pitfall of recursion:

A recursive algorithm does considerable redundant work if the **same** subproblem is encountered over and over again.

Antidote: dynamic programming.

Principle of dynamic programming

Resolve subproblems according to a certain **order**. Remember the output of every subproblem to avoid re-computation.

Problem: Let A be an array of n positive integers.

$$f(k) = \begin{cases} 0 & \text{if } k = 0\\ \max_{i=1}^{k} (A[i] + f(k-i)) & \text{if } 1 \le k \le n \end{cases}$$

Goal: Compute f(n).

Order of subproblems: f(1), ..., f(n).

Resolve subproblem f(1): O(1) time

Resolve subproblem f(2): O(2) time, given f(1).

. . .

Resolve subproblem f(k): O(k) time, given f(1), ..., f(k-1).

...

Resolve subproblem f(n): O(n) time, given f(1), ..., f(n-1).

In total: $O(n^2)$ time.

Pseudocode of our algorithm:

dyn-prog

- 1. initialize an array ans of size n
- 2. define special value $ans[0] \leftarrow 0$
- 3. **for** $k \leftarrow 1$ to n **do**

```
/* assuming f(0), f(1), ..., f(k-1) ready, compute f(k) */
```

4.
$$ans[k] \leftarrow -\infty$$

5. **for**
$$i \leftarrow 1$$
 to k **do**

6.
$$tmp \leftarrow A[i] + ans[k-i]$$

7. **if**
$$tmp > ans[k]$$
 then $ans[k] \leftarrow tmp$

Time complexity: $O(n^2)$.