Greedy 3: Huffman Codes

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong

Given an alphabet Σ (like the English alphabet), an encoding is a function that maps each letter in Σ to a binary string, called a codeword.

For example, suppose $\Sigma=\{a, b, c, d, e, f\}$ and consider the encoding where $a=000, b=001, c=010, d=011, e=100$, and $f=101$. The word "bed" can be encoded as 001100011.

We can reduce the length of encoding if letters' usage frequencies are known.

Suppose that, in a document, 10% of the letters are a, namely, the letter has frequency 10%. Similarly, suppose that letters b, c, d, e, and f have frequencies $20 \%, 13 \%, 9 \%, 40 \%$, and 8%, respectively.

If we use the encoding $a=100, b=111, c=101, d=1101, e=0$, $f=1100$, the average number of bits per letter is:

$$
3 \cdot 0.1+3 \cdot 0.2+3 \cdot 0.13+4 \cdot 0.09+1 \cdot 0.4+4 \cdot 0.08=2.37
$$

This is better than using 3 bits per letter.

What is wrong with the encoding $e=0, b=1, c=00, a=01$, $d=10, f=11$? Ambiguity in decoding! For example, does the string 10 mean "be" or "d"?

To allow decoding, we enforce the following constraint:
No letter's codeword should be a prefix of another letter's codeword.

An encoding satisfying the constraint is said to be a prefix code.

Example: The encoding $a=100, b=111, c=101, d=1101$, $e=0, f=1100$ is a prefix code. Just for fun, try decoding the following binary string.

$$
10011010100110011100
$$

The Prefix Coding Problem

For each letter $\sigma \in \Sigma$, let freq (σ) denote the frequency of σ. Also, denote by $\operatorname{len}(\sigma)$ the number of bits in the codeword of σ.

Given an encoding, its average length is

$$
\sum_{\sigma \in \Sigma} \operatorname{freq}(\sigma) \cdot \operatorname{len}(\sigma) .
$$

The objective of the prefix coding problem is to find a prefix code for Σ with the shortest average length.

A code tree on Σ as a binary tree T satisfying:

- Every leaf node of T corresponds to a unique letter in Σ; every letter in Σ corresponds to a unique leaf node in T.
- For every internal node of T, its left edge (if exists) is labeled 0 , and its right edge (if exists) is labeled 1.
T generates a prefix code as follows:
- For each letter $\sigma \in \Sigma$, generate its codeword by concatenating the bit labels of the edges on the path from the root of T to σ.

Think: Why must the encoding be a prefix code?

Lemma: Every prefix code is generated by a code tree.

The proof will be left as a regular exercise.

Example: For our encoding $a=100, b=111, c=101, d=1101$, $e=0$, and $f=1100$, the code tree is:

Let T be the code tree generating a prefix code. Given a letter σ of Σ, its code word length len (σ) is the level of its leaf node level (σ) in T (i.e., the number edges from the root to node σ).

Example:

The levels of e, a, c, f, d, and b are 1, 3, 3, 4, 4, and 3, respectively.
Hence:
avg length $=\sum_{\sigma \in \Sigma} \operatorname{freq}(\sigma) \cdot \operatorname{len}(\sigma)=\sum_{\sigma \in \Sigma} \operatorname{freq}(\sigma) \cdot \operatorname{level}(\sigma)=$ avg height of T
Goal (restated): Find a code tree on Σ with the smallest average height.

Huffman's Algorithm

Next, we will see a simple algorithm for solving the prefix coding problem.
Let $n=|\Sigma|$. In the beginning, create a set S of n stand-alone leaves, each corresponding to a distinct letter in Σ. If leaf z is for letter σ, define the frequency of z to be freq (σ).

Huffman's Algorithm

Then, repeat until $|S|=1$:
(1) Remove from S two nodes u_{1} and u_{2} with the smallest frequencies.
(2) Create a node v with u_{1} and u_{2} as the children. Set the frequency of v to be the frequency sum of u_{1} and u_{2}.
(3) Add v to S.

When $|S|=1$, we have obtained a code tree. The prefix code derived from this tree is a Huffman code.

Example

Consider our earlier example where a, b, c, d, e, and f have frequencies $0.1,0.2,0.13,0.09,0.4$, and 0.08 , respectively.

Initially, S has 6 nodes:

The number in each circle represents frequency (e.g., 10 means 10%).

Example

Merge the two nodes with the smallest frequencies 8 and 9 . Now S has 5 nodes $\left\{a, b, c, e, u_{1}\right\}$:

Example

Merge the two nodes with the smallest frequencies 10 and 13. Now S has 4 nodes $\left\{b, e, u_{1}, u_{2}\right\}$:

Example

Merge the two nodes with the smallest frequencies 17 and 20 . Now S has 3 nodes $\left\{e, u_{2}, u_{3}\right\}$:

Example

Merge the two nodes with the smallest frequencies 23 and 37 . Now S has 2 nodes $\left\{e, u_{4}\right\}$:

Example

Merge the two remaining nodes. Now S has a single node left.

This is the final code tree.

It is easy to implement the algorithm in $O(n \log n)$ time (exercise).
Next, we prove that the algorithm gives an optimal code tree, i.e., one that minimizes the average height.

Property 1

Lemma: In an optimal code tree, every internal node of T must have two children.

The proof is left as a regular exercise.

Property 2

Lemma: Let σ_{1} and σ_{2} be two letters in Σ with the lowest frequencies. There exists an optimal code tree where σ_{1} and σ_{2} have the same parent.

Proof: W.l.o.g., assume freq $\left(\sigma_{1}\right) \leq \operatorname{freq}\left(\sigma_{2}\right)$. Let T be any optimal code tree. Let p be an arbitrary internal node with the largest level in T. By Property 1, p must have two leaves. Let x and y be letters corresponding to those leaves such that $\operatorname{freq}(x) \leq$ freq (y). Swap σ_{1} with x and σ_{2} with y, which gives a new code tree T^{\prime}. Note that both σ_{1} and σ_{2} are children of p in T^{\prime}.

Convince yourself that the average length of T^{\prime} is at most that of T. Hence, T^{\prime} is optimal as well.

Theorem: Huffman's algorithm produces an optimal prefix code.

Proof: We will prove by induction on the size n of the alphabet Σ.
Base Case: $n=2$. In this case, the algorithm encodes one letter with 0 , and the other with 1 , which is clearly optimal.

General Case: Assuming the theorem's correctness for $n=k-1$ where $k \geq 3$, next we show that it also holds for $n=k$.

Proof (cont.): Let σ_{1} and σ_{2} be two letters in Σ with the lowest frequencies.

By Property 2, there is an optimal code tree T on Σ where leaves σ_{1} and σ_{2} are the children of the same parent p.

Let $T_{\text {huff }}$ be the code tree returned by Huffman's algorithm on Σ. Convince yourself that σ_{1} and σ_{2} have the same parent q in $T_{\text {huff }}$.

Proof (cont.): Construct a new alphabet Σ^{\prime} from Σ by removing σ_{1} and σ_{2}, and adding a letter σ^{*} with frequency freq $\left(\sigma_{1}\right)+$ freq $\left(\sigma_{2}\right)$.

Let T^{\prime} be the tree obtained by removing leaves σ_{1} and σ_{2} from T (thus making p a leaf). T^{\prime} is a code tree on Σ^{\prime} where p corresponds to σ^{*}. Observe:

$$
\text { avg height of } T=\operatorname{avg} \text { height of } T^{\prime}+\text { freq }\left(\sigma_{1}\right)+\text { freq }\left(\sigma_{2}\right) .
$$

Let $T_{\text {huff }}^{\prime}$ be the tree obtained by removing leaves σ_{1} and σ_{2} from $T_{\text {huff }}$ (thus making q a leaf). $T_{\text {huff }}^{\prime}$ is a code tree on Σ^{\prime} where q corresponds to σ^{*}.
avg height of $T_{\text {huff }}=\operatorname{avg}$ height of $T_{\text {huff }}^{\prime}+\operatorname{freq}\left(\sigma_{1}\right)+\operatorname{freq}\left(\sigma_{2}\right)$.

Proof (cont.): $T_{\text {huff }}^{\prime}$ is the output of Huffman's algorithm on Σ^{\prime}.
By our inductive assumption, $T_{\text {huff }}^{\prime}$ is optimal on Σ^{\prime}. Thus: avg height of $T_{\text {huff }}^{\prime} \leq \operatorname{avg}$ height of T^{\prime}

Hence:
avg height of $T_{\text {huff }} \leq$ avg height of T.

