Greedy 1: Activity Selection

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong

In this lecture, we will commence our discussion of greedy algorithms, which enforce a simple strategy: make the locally optimal decision at each step. Although this strategy does not always guarantee finding a globally optimal solution, sometimes it does. The nontrivial part is to prove (or disprove) the global optimality.

Activity Selection

Input: A set S of n intervals of the form $[s, f]$ where s and f are integers. Output: A subset T of disjoint intervals in S with the largest size $|T|$.

Remark: You can think of $[s, f]$ as the duration of an activity, and consider the problem as picking the largest number of activities that do not have time conflicts.

Activity Selection

Example: Suppose

$$
S=\{[1,9],[3,7],[6,20],[12,19],[15,17],[18,22],[21,24]\}
$$

$T=\{[3,7],[15,17],[18,22]\}$ is an optimal solution, and so is $T=$ $\{[1,9],[12,19],[21,24]\}$.

Activity Selection

Algorithm

Repeat until S becomes empty:

- Add to T the interval $\mathcal{I} \in S$ with the smallest finish time.
- Remove from S all the intervals intersecting \mathcal{I} (including \mathcal{I} itself)

Activity Selection

Example: Suppose $S=\{[1,9],[3,7],[6,20],[12,19],[15,17],[18,22]$, [21, 24]\}.

Sort the intervals in S by finish time: $S=\{[3,7],[1,9],[15,17]$, [12, 19], [6, 20], [18, 22], [21, 24]\}.

We first add $[3,7]$ to T, after which intervals [3, 7], [1, 9] and [6, 20] are removed. Now S becomes $\{[15,17],[12,19],[18,22],[21,24]\}$. The next interval added to T is [15, 17], which shrinks S further to $\{[18,22],[21,24]\}$. After [18, 22] is added to T, S becomes empty and the algorithm terminates.

Activity Selection

Next, we will prove that the algorithm returns an optimal solution. Let us start with a crucial claim.

Claim: Let $\mathcal{I}=[s, f]$ be the interval in S with the smallest finish time. There must be an optimal solution that contains \mathcal{I}.

Proof: Let T^{*} be an arbitrary optimal solution that does not contain \mathcal{I}. We will turn T^{*} into another optimal solution T containing \mathcal{I}.

Let $\mathcal{I}^{\prime}=\left[s^{\prime}, f^{\prime}\right]$ be the interval in T^{*} with the smallest finish time. We construct T as follows: add all the intervals in T^{*} to T except \mathcal{I}^{\prime}, and finally add \mathcal{I} to T.

We will prove that all the intervals in T are disjoint. This indicates that T is also an optimal solution, and hence, will complete the proof.

Activity Selection

It suffices to prove that \mathcal{I} cannot intersect with any other interval in T.

Consider any interval $\mathcal{J}=[a, b]$ in T. By definition of \mathcal{I}^{\prime}, we must have $f^{\prime} \leq b$. Combining this and the fact that \mathcal{J} is disjoint with \mathcal{I}^{\prime}, we assert that $f^{\prime}<a$. On the other hand, by definition of \mathcal{I}, it must hold that $f \leq f^{\prime}$. It thus follows that $f<a$ and, hence, \mathcal{I} and \mathcal{J} are disjoint.

Activity Selection

Think 1: How to utilize the claim to prove that our algorithm is optimal?

Think 2: How to implement the algorithm in $O(n \log n)$ time?

