Greedy 1: Activity Selection

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

1/9

In this lecture, we will commence our discussion of **greedy** algorithms, which enforce a simple strategy: make the **locally optimal** decision at each step. Although this strategy does not always guarantee finding a **globally optimal** solution, sometimes it does. The nontrivial part is to prove (or disprove) the global optimality.

Input: A set S of n intervals of the form [s, f] where s and f are integers. **Output:** A subset T of disjoint intervals in S with the largest size |T|.

Remark: You can think of [s, f] as the duration of an activity, and consider the problem as picking the largest number of activities that do not have time conflicts.

Example: Suppose

$$S = \{[1, 9], [3, 7], [6, 20], [12, 19], [15, 17], [18, 22], [21, 24]\}.$$

 $T = \{[3,7],[15,17],[18,22]\}$ is an optimal solution, and so is $T = \{[1,9],[12,19],[21,24]\}$.

Yufei Tao

Algorithm

Repeat until S becomes empty:

- Add to T the interval $\mathcal{I} \in S$ with the smallest finish time.
- Remove from S all the intervals intersecting \mathcal{I} (including \mathcal{I} itself)

Yufei Tao

5/9

Example: Suppose $S = \{[1, 9], [3, 7], [6, 20], [12, 19], [15, 17], [18, 22], [21, 24]\}.$

Sort the intervals in S by finish time: $S = \{[3,7], [1,9], [15,17], [12,19], [6,20], [18,22], [21,24]\}.$

We first add [3,7] to T, after which intervals [3,7], [1,9] and [6,20] are removed. Now S becomes $\{[15,17],[12,19],[18,22],[21,24]\}$. The next interval added to T is [15,17], which shrinks S further to $\{[18,22],[21,24]\}$. After [18,22] is added to T, S becomes empty and the algorithm terminates.

Next, we will prove that the algorithm returns an optimal solution. Let us start with a crucial claim.

Claim: Let $\mathcal{I} = [s, f]$ be the interval in S with the smallest finish time. There must be an optimal solution that contains \mathcal{I} .

Proof: Let T^* be an arbitrary optimal solution that does not contain \mathcal{I} . We will turn T^* into another optimal solution T containing \mathcal{I} .

Let $\mathcal{I}' = [s', f']$ be the interval in \mathcal{T}^* with the **smallest** finish time. We construct \mathcal{T} as follows: add all the intervals in \mathcal{T}^* to \mathcal{T} except \mathcal{I}' , and finally add \mathcal{I} to \mathcal{T} .

We will prove that all the intervals in T are disjoint. This indicates that T is also an optimal solution, and hence, will complete the proof.

It suffices to prove that \mathcal{I} cannot intersect with any other interval in \mathcal{T} .

Consider any interval $\mathcal{J} = [a, b]$ in \mathcal{T} . By definition of \mathcal{I}' , we must have $f' \leq b$. Combining this and the fact that \mathcal{J} is disjoint with \mathcal{I}' , we assert that f' < a. On the other hand, by definition of \mathcal{I} , it must hold that $f \leq f'$. It thus follows that f < a and, hence, \mathcal{I} and \mathcal{J} are disjoint.

ロト 4 雨 ト 4 重 ト 4 雨 ト 4 雨

Think 1: How to utilize the claim to prove that our algorithm is optimal?

Think 2: How to implement the algorithm in $O(n \log n)$ time?

Yufei Tao