Basic Techniques:
 Recursion, Repeating, and Geometric Series

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong

Today we will discuss three basic techniques of algorithm design:

- Recursion
- Repeating (till success)
- Geometric Series.

Recursion

Principle of recursion

When dealing with a subproblem (same problem but with a smaller input), consider it solved, and use the subproblem's output to continue the algorithm design.

Tower of Hanoi

There are 3 rods A, B, and C .
On rod A, n disks of different sizes are stacked in such a way that no disk of a larger size is above a disk of a smaller size.

The other two rods are empty.

Permitted operation: Move the top-most disk of a rod to another rod. Constraint: No disk of a larger size can be above a disk of a smaller size.

Goal: Design an algorithm to move all the disks to rod B.

Algorithm

Subproblem: Same problem but with $n-1$ disks.
Consider the subproblem solved (i.e., assume you already have an algorithm for it).

Now, solve the problem with n disks as follows:

Analysis

Suppose that our algorithm performs $f(n)$ operations to solve a problem of size n. Clearly, $f(1)=1$. By recursion, we can write

$$
f(n) \leq 1+2 \cdot f(n-1)
$$

Solving this recurrence gives $f(n) \leq 2^{n}-1$.

Use recursion to "redesign" the following algorithms:

- Binary search
- Quick sort

Repeating till Success

The k-Selection Problem: You are given a set S of n integers in an array and an integer $k \in[1, n]$. Find the k-th smallest integer of S.

For example, suppose that $S=(53,92,85,23,35,12,68,74)$ and $k=3$. You should output 35.

The rank of an integer $v \in S$ is the number of elements in S smaller than or equal to v.

For example, suppose that $S=(53,92,85,23,35,12,68,74)$. Then, the rank of 53 is 4 , and that of 12 is 1 .

Easy: The rank of v can be obtained in $O(|S|)$ time.

Consider the following task:

Task: Assume n to be a multiple of 3 . Obtain a subproblem of size at most $2 n / 3$ with exactly the same result as the original problem.

Our goal is to produce a set S^{\prime} and an integer k^{\prime} such that

- $\left|S^{\prime}\right| \leq 2 n / 3$
- $k^{\prime} \in\left[1,\left|S^{\prime}\right|\right]$
- The element with rank k^{\prime} in S^{\prime} is the element with rank k in S.

We will give an algorithm to accomplish the task in $O(n)$ expected time.

Consider the following algorithm.
(1) Take an element $v \in S$ uniformly at random.
(2) Divide S into S_{1} and S_{2} where

- $S_{1}=$ the set of elements in S less than or equal to v;
- $S_{2}=$ the set of elements in S greater than v.
(3) If $\left|S_{1}\right| \geq k$, then return $S^{\prime}=S_{1}$ and $k^{\prime}=k$; else return $S^{\prime}=S_{2}$ and $k^{\prime}=k-\left|S_{1}\right|$.

The algorithm succeeds if $\left|S^{\prime}\right| \leq 2 n / 3$, or fails otherwise.
Repeat the algorithm until it succeeds.

Lemma: The algorithm succeeds with probability at least $1 / 3$.

Proof: The algorithm always succeeds when the rank of v falls in $\left[\frac{n}{3}, \frac{2}{3} n\right]$ (think: why?). This happens with a probability at least $1 / 3$, by the fact that v is taken from S uniformly at random.

In general, if an algorithm succeeds with a probability at least $c>0$, then the number of repeats needed for the algorithm to succeed for the first time is at most $1 / c$ in expectation.

We expect to repeat the algorithm at most 3 times before it succeeds. This implies that the expected running time is $O(n)$ (think: why?).

Geometric Series

A geometric sequence is an infinite sequence of the form

$$
n, c n, c^{2} n, c^{3} n, \ldots
$$

where n is a positive number and c is a constant satisfying $0<c<1$.

It holds in general that

$$
\sum_{i=0}^{\infty} c^{i} n=\frac{n}{1-c}=O(n) .
$$

The summation $\sum_{i=0}^{\infty} c^{i} n$ is called a geometric series.

Geometric series are extremely important for algorithm design.

Consider again:

The k-Selection Problem: You are given a set S of n integers in an array and an integer $k \in[1, n]$. Find the k-th smallest integer of S.

Algorithm

Using the repeating technique, now you should be able to convert the problem to a subproblem with size at most $\lceil 2 n / 3\rceil$ in $O(n)$ expected time.

Now, apply the recursion technique. We have already obtained a (complete) algorithm solving the k-selection problem!

Think: How is this related to geometric series?

Analysis

Let $f(n)$ be the expected running time of our algorithm on an array of size n.

We know:

$$
\begin{aligned}
& f(1) \leq O(1) \\
& f(n) \leq O(n)+f(\lceil 2 n / 3\rceil)
\end{aligned}
$$

Solving the recurrence gives $f(n)=O(n)$.

