Problem 1. Free marks.
Problem 2. Suppose that such S_{1} and S_{2} exist. Let u be any vertex in $S_{1} \cap S_{2}$, and v be any vertex in $S_{2} \backslash S_{1}$. For any vertex $w \in S_{1}$, because w can reach u in S_{1} which in turn can reach v in S_{2}, we know w can reach v. On the other hand, because v can reach u in S_{2} which in turn can reach w in S_{1}, we know v can reach w. Thus, $S_{2} \cup\{w\}$ is a set of vertices that are mutually reachable. This violates the maximality of S_{2} as an SCC.

Problem 3. We first prove LHS \leq RHS. Suppose that the RHS is minimized at $u \in \operatorname{IN}(t)$. Thus, there is a path from s to t that first goes to u with distance $\operatorname{spdist}(s, u)$ and then crossing the edge (u, t). This path has length $\operatorname{spdist}(s, u)+w(u, t)$, implying LHS \leq RHS.

Next, we prove LHS \geq RHS. Consider an arbitrary shortest path π from s to t. Let u be the vertex preceding t on π. Clearly, $u \in \operatorname{IN}(t)$. The length of π, namely the LHS, must be $\operatorname{spdist}(s, u)+w(u, t)$. Note that $\operatorname{spdist}(s, u)+w(u, t)$ is merely one of the terms considered in the minimization of the RHS. It thus follows that LHS \geq RHS.

Problem 4. First build a complete undirected graph $G(V, E)$ where

- $V=P ;$
- for every two points $u, v \in P$, the edge $\{u, v\} \in E$ carries a weight equal to the two points' distance.

Then, a cycle defined in the problem statement is a Hamiltonian cycle in G. Thus, a cycle with length at most $2 \cdot$ OPT can be found using the 2 -approximate algorithm taught in the class.

Problem 5. We can cast the problem as a set cover problem. For the i-th column, define a set S_{i} of integers such that an integer $j \in[1, n]$ belongs to S_{i} if and only if $M[j, i]=1$. Now, we can apply the $\ln n$-approximate set-cover algorithm taught in the class to solve this problem.

Problem 6. The algorithm is correct (Prof. Goofy finally got it right!). First, if an SCC has at least two distinct vertices u, v, then G has a path from u to v and also a path from v to u, which make a cycle. Second, if every SCC has only one vertex, then G itself is the SCC graph $G^{s c c}$, which must be acyclic as proven in the class. It thus follows that G is acyclic.

Problem 7. First, find the median m of S in $O(n)$ expected time. Then, create another set of integers $T=\{|x-m| \mid x \in S\}$. Use k-selection to find the k-th smallest number $t \in T$. Then, scan S once to output every integer $x \in S$ satisfying $|x-m| \leq t$.

Problem 8. We can assume, w.l.o.g., that n is a power of 2. Let $S=P \cup Q$. Divide S using a vertical line ℓ such that exactly $n / 2$ points fall on each side of ℓ. Let P_{1} (resp., P_{2}) be the set of points in P on the left (resp., right) of ℓ. Define Q_{1} and Q_{2} similarly for Q. Recurse on $\left(P_{1}, Q_{1}\right)$ and then on $\left(P_{2}, Q_{2}\right)$.

When we return from recursion, we have obtained, for each point $q_{1} \in Q_{1}$, the number c_{1} of points in P_{1} dominated by q_{1}. The count c_{1} is precisely $\operatorname{dom}_{P}\left(q_{1}\right)$ and be output directly. For each point $q_{2} \in Q_{2}$, the recursion has found the number c_{2} of points in P_{2} dominated by q_{2}. To obtain $\operatorname{dom}_{P}\left(q_{2}\right)$, we still need to find the number c_{2}^{\prime} of points in P_{1} dominated by q_{2}, after which $\operatorname{dom}_{P}\left(q_{2}\right)$ can be set to $c_{2}+c_{2}^{\prime}$.

Next, we will explain how to find c_{2}^{\prime} for each point $q_{2} \in Q_{2}$. First, obtain the set Y of y-coordinates of the points in P_{1}. Sort Y in ascending order using $O(n \log n)$ time. Then, for each point q_{2}, the count c_{2}^{\prime} is the number of values in Y that are less than or equal to $q_{2}[y]$. The count can be obtained with binary search in $O(\log n)$ time.

Let $f(n)$ be the worst-case running time of our algorithm when the input size is n. It is
clear from the above discussion that $f(1)=O(1)$ and for $n \geq 2$

$$
f(n) \leq 2 \cdot f(n / 2)+O(n \log n)
$$

Solving the recurrence gives $f(n)=O\left(n \log ^{2} n\right)$.

Problem 9.

1. $C^{*}=\{b, e\}$ and $r\left(C^{*}\right)=1$.

2: Let $C=\left\{o_{1}, o_{2}\right\}$ be the set returned by the k-center algorithm. Assume that o_{1} (resp., o_{2}) is the first (resp., the second) point added into C.

- When $o_{1} \in\{a, b, c\}, o_{2}$ must be f. We have $r(C)=2$.
- When $o_{1} \in\{d, e, f\}, o_{2}$ must be a. We also have $r(C)=2$.

Therefore, the radius of the centroid set returned by the k-center algorithm is always $2 \cdot r\left(C^{*}\right)$.
Problem 10. First, find the shortest path distance from s to each vertex $u \in V$. This can be done in $O((n+m) \log n)$ time by Dijkstra's algorithm.

Second, find the shortest path distance from every vertex $u \in V$ to t. This can also be done in $O((n+m) \log n)$ time. For this purpose, obtain a graph $G^{\text {rev }}$ from G by reversing the direction of every edge in G. Then, run Dijkstra's algorithm to find the shortest path distance from t to every vertex $u \in V$ in $G^{r e v}$. This distance is precisely the shortest path distance from u to t in the original graph G.

An edge (u, v) is feasible if and only if $\operatorname{spdist}(s, u)+w(u, v)+\operatorname{spdist}(v, t) \leq \sigma$. It is now trivial to report all the feasible edges in $O(m)$ time.

