
Problem 1. Free marks.

Problem 2. Suppose that such S1 and S2 exist. Let u be any vertex in S1 ∩ S2, and v be any
vertex in S2 \ S1. For any vertex w ∈ S1, because w can reach u in S1 which in turn can reach
v in S2, we know w can reach v. On the other hand, because v can reach u in S2 which in turn
can reach w in S1, we know v can reach w. Thus, S2∪{w} is a set of vertices that are mutually
reachable. This violates the maximality of S2 as an SCC.

Problem 3. We first prove LHS ≤ RHS. Suppose that the RHS is minimized at u ∈ IN(t).
Thus, there is a path from s to t that first goes to u with distance spdist(s, u) and then crossing
the edge (u, t). This path has length spdist(s, u) + w(u, t), implying LHS ≤ RHS.

Next, we prove LHS ≥ RHS. Consider an arbitrary shortest path π from s to t. Let u be
the vertex preceding t on π. Clearly, u ∈ IN(t). The length of π, namely the LHS, must be
spdist(s, u) + w(u, t). Note that spdist(s, u) + w(u, t) is merely one of the terms considered in
the minimization of the RHS. It thus follows that LHS ≥ RHS.

Problem 4. First build a complete undirected graph G(V,E) where

• V = P ;

• for every two points u, v ∈ P , the edge {u, v} ∈ E carries a weight equal to the two points’
distance.

Then, a cycle defined in the problem statement is a Hamiltonian cycle in G. Thus, a cycle with
length at most 2 ·OPT can be found using the 2-approximate algorithm taught in the class.

Problem 5. We can cast the problem as a set cover problem. For the i-th column, define a set
Si of integers such that an integer j ∈ [1, n] belongs to Si if and only if M [j, i] = 1. Now, we
can apply the lnn-approximate set-cover algorithm taught in the class to solve this problem.

Problem 6. The algorithm is correct (Prof. Goofy finally got it right!). First, if an SCC has
at least two distinct vertices u, v, then G has a path from u to v and also a path from v to u,
which make a cycle. Second, if every SCC has only one vertex, then G itself is the SCC graph
Gscc , which must be acyclic as proven in the class. It thus follows that G is acyclic.

Problem 7. First, find the median m of S in O(n) expected time. Then, create another set of
integers T = {|x−m| | x ∈ S}. Use k-selection to find the k-th smallest number t ∈ T . Then,
scan S once to output every integer x ∈ S satisfying |x−m| ≤ t.

Problem 8. We can assume, w.l.o.g., that n is a power of 2. Let S = P ∪Q. Divide S using
a vertical line ℓ such that exactly n/2 points fall on each side of ℓ. Let P1 (resp., P2) be the
set of points in P on the left (resp., right) of ℓ. Define Q1 and Q2 similarly for Q. Recurse on
(P1, Q1) and then on (P2, Q2).

When we return from recursion, we have obtained, for each point q1 ∈ Q1, the number c1
of points in P1 dominated by q1. The count c1 is precisely domP (q1) and be output directly.
For each point q2 ∈ Q2, the recursion has found the number c2 of points in P2 dominated by
q2. To obtain domP (q2), we still need to find the number c′2 of points in P1 dominated by q2,
after which domP (q2) can be set to c2 + c′2.

Next, we will explain how to find c′2 for each point q2 ∈ Q2. First, obtain the set Y of
y-coordinates of the points in P1. Sort Y in ascending order using O(n log n) time. Then, for
each point q2, the count c′2 is the number of values in Y that are less than or equal to q2[y].
The count can be obtained with binary search in O(log n) time.

Let f(n) be the worst-case running time of our algorithm when the input size is n. It is

1

clear from the above discussion that f(1) = O(1) and for n ≥ 2

f(n) ≤ 2 · f(n/2) +O(n log n).

Solving the recurrence gives f(n) = O(n log2 n).

Problem 9.
1. C∗ = {b, e} and r(C∗) = 1.

2: Let C = {o1, o2} be the set returned by the k-center algorithm. Assume that o1 (resp.,
o2) is the first (resp., the second) point added into C.

• When o1 ∈ {a, b, c}, o2 must be f . We have r(C) = 2.

• When o1 ∈ {d, e, f}, o2 must be a. We also have r(C) = 2.

Therefore, the radius of the centroid set returned by the k-center algorithm is always 2 · r(C∗).

Problem 10. First, find the shortest path distance from s to each vertex u ∈ V . This can be
done in O((n+m) log n) time by Dijkstra’s algorithm.

Second, find the shortest path distance from every vertex u ∈ V to t. This can also be
done in O((n+m) log n) time. For this purpose, obtain a graph Grev from G by reversing the
direction of every edge in G. Then, run Dijkstra’s algorithm to find the shortest path distance
from t to every vertex u ∈ V in Grev . This distance is precisely the shortest path distance from
u to t in the original graph G.

An edge (u, v) is feasible if and only if spdist(s, u) + w(u, v) + spdist(v, t) ≤ σ. It is now
trivial to report all the feasible edges in O(m) time.

2

