
CSCI3160: Regular Exercise Set 8

Prepared by Yufei Tao

Problem 1. Consider the SCC graph Gscc discussed in our lecture. Prove: Gscc is a DAG (directed
acyclic graph).

Solution. Suppose that Gscc contains a cycle. Let S1 and S2 be two arbitrary SCCs inside the
circle. By how Gscc is constructed, we can infer:

• in G, each vertex of S1 can reach all the vertices of S2;

• in G, each vertex of S2 can reach all the vertices of S1.

Thus, S1 violates the maximality condition of SCC, yielding a contradiction.

Problem 2. Let G = (V,E) be a directed simple graph stored in the adjacency-list format.
Define Grev = (V,Erev) be the reverse graph of G, namely, Erev = {(v, u) | (u, v) ∈ E}. Design
an algorithm to produce the adjacency list of Grev in O(|V | + |E|) time. You can assume that
V = {1, 2, ..., n}.

Solution. First, create an empty linked list L(u) for each vertex u ∈ V , and initialize an array
A of size |V | where A[u] stores the head pointer to L(u) (note: u is an integer). For each vertex
u ∈ V , the adjacency list of G stores the out-neighbors of u in a linked list; we scan this linked list
and, for each out-neighbor v of u, add u to L(v). After completing the procedure for all u ∈ V , the
set {L(u) | u ∈ V } constitutes the adjacency list of Grev .

Problem 3. Implement the SCC algorithm discussed in our lecture in O(|V |+ |E|) time. You can
assume that V = {1, 2, ..., n}.

Solution. To implement Step 1, simply perform DFS on the input graph G = (V,E) in O(|V |+ |E|)
time. Store the turn-black order in an array A, namely, A[i] = u (for i ∈ [1, n]) if vertex u ∈ V
has label i. It is easy to generate A during the aforementioned DFS without increasing the time
complexity.

Step 2 can be completed using the solution to Problem 2.

To implement Step 3, start DFS from vertex A[n] (i.e., the vertex having the largest label).
When a restart is needed, examine A[n− 1], A[n− 2], ... until reaching the first vertex A[i] whose
color is still white. Start the second DFS with A[i]. When another restart is needed, choose the
starting vertex in the same manner. Repeat the above until all vertices have been visited by DFS.

Problem 4. Let G = (V,E) be a DAG, where each vertex u ∈ V carries an integer weight denoted
as wu. Let R(u) be the set of vertices in G that u can reach (i.e., for each vertex v ∈ R(u), G has a
path from u to v); note that u ∈ R(u) (i.e., a node can reach itself). Define W (u) = minv∈R(u)wv.
Design an algorithm to compute the W (u) values of all u ∈ V in O(|V |+ |E|) time.
(Hint: dynamic programming).

Solution. For each u ∈ V , let Out(u) be the set of out-neighbors of u. We have:

W (u) =

{
wu if Out(u) = ∅
min{wu,minv∈Out(u)W (v)} otherwise

1

We can therefore calculate the W (u) values of all u ∈ V by dynamic programming (go over the
vertices by reversing a topological order).

Problem 5*. Let G = (V,E) be an arbitrary directed simple graph, where each vertex u ∈ V
carries an integer weight denoted as wu. Let R(u) be the set of vertices in G that u can reach; note
that u ∈ R(u). Define W (u) = minu∈R(u)wu. Design an algorithm to compute the W (u) values of
all u ∈ V in O(|V |+ |E|) time.

Solution. Observe that if u and v belong to the same SCC of G, then R(u) is exactly the same as
R(v).

First, obtain the SCCs of G in O(|V | + |E|) time and then generate the SCC graph Gscc in
O(|V |+ |E|) time (this is a special exercise of this week). For each SCC S, define the weight of its
vertex in Gscc as wS = minu∈S wu. Define Rscc(S) as the set of vertices in Gscc that S can reach,
and define W (S) = minT∈Rscc(S)wT . Use the solution to Problem 4 to find the W (S) values for all
the vertices S in Gscc .

For every vertex u in G, its W (u) value equals exactly W (S) where S is the SCC containing u.

2

