CSCI3160: Regular Exercise Set 7

Prepared by Yufei Tao

Problem 1. Let x and y be two strings of length n and m, respectively. Suppose that $x[n]=y[m]$. Prove: the following are true for any LCS z of x and y :

- Let k be the length of z. It holds that $z[k]=x[n]=y[m]$.
- $z[1: k-1]$ is an LCS of $x[1: n-1]$ and $y[1: m-1]$.

Problem 2. Let x be a string of length n, and y a string of length m. Define $\operatorname{opt}(i, j)$ to be the length of an LCS of $x[1: i]$ and $y[1: j]$ for $i \in[0, n]$ and $j \in[0, m]$. In the lecture, we already discussed how to calculate $\operatorname{opt}(i, j)$ for all possible (i, j) pairs. Based on that discussion, explain an algorithm that can output an LCS of x and y in $O(n m)$ time.

Problem 3 (Matrix-Chain Multiplication). The goal in this problem to calculate $\boldsymbol{A}_{1} \boldsymbol{A}_{2} \ldots \boldsymbol{A}_{n}$ where \boldsymbol{A}_{i} is an $a_{i} \times b_{i}$ matrix for $i \in[1, n]$. This implies that $b_{i-1}=a_{i}$ for $i \in[2, n]$, and the final result is an $a_{1} \times b_{n}$ matrix. You are given an algorithm \mathcal{A} that, given an $a \times b$ matrix \boldsymbol{A} and a $b \times c$ matrix \boldsymbol{B}, can calculate $\boldsymbol{A} \boldsymbol{B}$ in $O(a b c)$ time. To calculate $\boldsymbol{A}_{1} \boldsymbol{A}_{2} \ldots \boldsymbol{A}_{n}$, you can apply parenthesization, namely, convert the expression to $\left(\boldsymbol{A}_{1} \ldots \boldsymbol{A}_{i}\right)\left(\boldsymbol{A}_{i+1} \ldots \boldsymbol{A}_{n}\right)$ for some $i \in[1, n-1]$, and then parenthesize each of $\boldsymbol{A}_{1} \ldots \boldsymbol{A}_{i}$ and $\boldsymbol{A}_{i+1} \ldots \boldsymbol{A}_{n}$ recursively. A fully parenthesized product is

- either a single matrix or
- the product of two fully parenthesized products.

For example, if $n=4$, then $\left(\boldsymbol{A}_{1} \boldsymbol{A}_{2}\right)\left(\boldsymbol{A}_{3} \boldsymbol{A}_{4}\right)$ and $\left(\left(\boldsymbol{A}_{1} \boldsymbol{A}_{2}\right) \boldsymbol{A}_{3}\right) \boldsymbol{A}_{4}$ are fully parenthesized, but $\boldsymbol{A}_{1}\left(\boldsymbol{A}_{2} \boldsymbol{A}_{3} \boldsymbol{A}_{4}\right)$ is not. Each fully parenthesized product has a computation cost under \mathcal{A}; e.g., given $\left(\boldsymbol{A}_{1} \boldsymbol{A}_{2}\right)\left(\boldsymbol{A}_{3} \boldsymbol{A}_{4}\right)$, you first calculate $\boldsymbol{B}_{1}=\boldsymbol{A}_{1} \boldsymbol{A}_{2}$ and $\boldsymbol{B}_{2}=\boldsymbol{A}_{3} \boldsymbol{A}_{4}$, and then calculate $\boldsymbol{B}_{1} \boldsymbol{B}_{2}$, all using \mathcal{A}. The cost of the fully parenthesized product is the total cost of the three pairwise matrix multiplications.

Design an algorithm to find in $O\left(n^{3}\right)$ time a fully parenthesized product with the smallest cost.
Problem 4 (Longest Ascending Subsequence). Let A be a sequence of n distinct integers. A sequence B of integers is a subsequence of A if it satisfies one of the following conditions:

- $A=B$ or
- we can convert A to B by repeatedly deleting integers.

The subsequence B is ascending if its integers are arranged in ascending order. Design an algorithm to find an ascending subsequence of A with the maximum length. Your algorithm should run in $O\left(n^{2}\right)$ time. For example, if $A=(10,5,20,17,3,30,25,40,50,60,24,55,70,58,80,44)$, then a longest ascending sequence is $(10,20,30,40,50,60,70,80)$.

Problem 5*. In this problem, we will revisit a regular exercise discussed before and derive a faster algorithm using dynamic programming.

Let A be an array of n integers (A is not necessarily sorted). Each integer in A may be positive or negative. Given i, j satisfying $1 \leq i \leq j \leq n$, define subarray $A[i: j]$ as the sequence
$(A[i], A[i+1], \ldots, A[j])$, and the weight of $A[i: j]$ as $A[i]+A[i+1]+\ldots+A[j]$. For example, consider $A=(13,-3,-25,20,-3,-16,-23,18) ; A[1: 4]$ has weight 5 , while $A[2: 4]$ has weight -8 . Design an algorithm to find a subarray of A with the largest weight in $O(n)$ time.

Remark: We solved the problem using divide-and-conquer in $O(n \log n)$ time before.

