
CSCI3160: Regular Exercise Set 7

Prepared by Yufei Tao

Problem 1. Let x and y be two strings of length n and m, respectively. Suppose that x[n] = y[m].
Prove: the following are true for any LCS z of x and y:

• Let k be the length of z. It holds that z[k] = x[n] = y[m].

• z[1 : k − 1] is an LCS of x[1 : n− 1] and y[1 : m− 1].

Solution. Proof of the first bullet. Let G be a correspondence graph induced by z (as defined in
our lecture) and let e be the rightmost edge of G. If z[k] ̸= x[n] (and hence z[k] ̸= y[m]), then e
cannot be incident on x[n], and e cannot be incident on y[m]. We can therefore add another edge
to G by connecting x[n] and y[m]. The new graph implies a common subsequence of x and y that
is longer than z, giving a contradiction.

Proof of the second bullet. This is in fact a corollary of the first bullet. Suppose that z[1 : k − 1] is
not an LCS of x[1 : n− 1] and y[1 : m− 1]. Then, identify any LCS z′ of x[1 : n− 1] and y[1 : m− 1],
which is longer than z. Thus, z′ ◦ x[n] (where ◦ is the “concatenation” operator) is an LCS of x and
y. As z′ is longer than z, we now have a contradiction.

Problem 2. Let x be a string of length n, and y a string of length m. Define opt(i, j) to be the
length of an LCS of x[1 : i] and y[1 : j] for i ∈ [0, n] and j ∈ [0,m]. In the lecture, we already
discussed how to calculate opt(i, j) for all possible (i, j) pairs. Based on that discussion, explain an
algorithm that can output an LCS of x and y in O(nm) time.

Solution. Recall:

opt(i, j) =


0 if i = 0 or j = 0

opt(i− 1, j − 1) + 1 if i, j > 0 and x[i] = y[j]

max{opt(i, j − 1), opt(i− 1, j)} if i, j > 0 and x[i] ̸= y[j].

We will now apply the “piggyback technique” discussed in the lecture to generate an LCS. For
this purpose, let us define

bestSub(i, j) =


nil if i = 0 or j = 0

nil if i, j > 0 and x[i] = y[j]

shrink x if i, j > 0, x[i] ̸= y[j], and opt(i− 1, j) ≥ opt(i, j − 1)

shrink y if i, j > 0, x[i] ̸= y[j], and opt(i− 1, j) < opt(i, j − 1)

After computing opt(i, j) for all (i, j) pairs, we can compute each bestSub(i , j ) in constant time.
The total time is O(nm).

We can now construct an LCS z of x and y as follows. First, if x or y is the empty string, set
z to the empty string. Second, if x[n] = y[m], recursively obtain an LCS z′ of x[1 : n − 1] and
y[1 : m− 1] and then set z = z′ ◦ x[n], where ◦ means concatenation. Finally, if x[n] ̸= y[m], we act
differently according to bestSub(n,m):

• If it is “shrink x”, we recursively obtain an LCS z′ of x[1 : n− 1] and y and then set z = z′.

1



• If it is “shrink y”, we recursively obtain an LCS z′ of x and y[1 : m− 1] and then set z = z′.

Problem 3 (Matrix-Chain Multiplication). The goal in this problem is to calculate A1A2...An

where Ai is an ai × bi matrix for i ∈ [1, n]. This implies that bi−1 = ai for i ∈ [2, n], and the
final result is an a1 × bn matrix. You are given an algorithm A that, given an a × b matrix A
and a b× c matrix B, can calculate AB in O(abc) time. To calculate A1A2...An, you can apply
parenthesization, namely, convert the expression to (A1...Ai)(Ai+1...An) for some i ∈ [1, n− 1], and
then parenthesize each of A1...Ai and Ai+1...An recursively. A fully parenthesized product is

• either a single matrix or

• the product of two fully parenthesized products.

For example, if n = 4, then (A1A2)(A3A4) and ((A1A2)A3)A4 are fully parenthesized, but
A1(A2A3A4) is not. Each fully parenthesized product has a computation cost under A; e.g., given
(A1A2)(A3A4), you first calculate B1 = A1A2 and B2 = A3A4, and then calculate B1B2, all
using A. The cost of the fully parenthesized product is the total cost of the three pairwise matrix
multiplications.

Design an algorithm to find in O(n3) time a fully parenthesized product with the smallest cost.

Solution. Given i, j satisfying 1 ≤ i ≤ j ≤ n, we define cost(i, j) to be the smallest achievable cost
for calculating AiAi+1...Aj with parenthesization. Our objective is to calculate cost(1, n).

A key observation is that B1 = Ai...Ak is an ai× bk matrix and B2 = Ak+1...Aj is an ak+1× bj
matrix (where bk = ak+1); so it takes O(aibkbj) time to compute B1B2. This means that if we start
with the parenthesization (Ai...Ak)(Ak+1...Aj), the best achievable cost is cost(i, k) + cost(k +
1, j) +O(aibkbj). This implies:

cost(i, j) =

{
O(1) if i = j

minj−1
k=i(cost(i, k) + cost(k + 1, j) +O(aibkbj)) if i < j

Using dynamic programming, we can compute cost(1, n) in O(n3) time. Using the “piggyback
technique”, we can produce an optimal parenthesization in O(n3) extra time.

Problem 4 (Longest Ascending Subsequence). Let A be a sequence of n distinct integers. A
sequence B of integers is a subsequence of A if it satisfies one of the following conditions:

• A = B or

• we can convert A to B by repeatedly deleting integers.

The subsequence B is ascending if its integers are arranged in ascending order. Design an algorithm
to find an ascending subsequence of A with the maximum length. Your algorithm should run in
O(n2) time. For example, if A = (10, 5, 20, 17, 3, 30, 25, 40, 50, 60, 24, 55, 70, 58, 80, 44), then a longest
ascending sequence is (10, 20, 30, 40, 50, 60, 70, 80).

Solution. We say that B is an end-aligned ascending subsequence of A if A[n] is the last integer in
B. In the example given in the problem statement, (5, 20, 30, 40, 44) is an end-aligned ascending
subsequence of A, while (10, 20, 30, 40, 50, 60, 70, 80) is not. Given an i ∈ [1, n], we use len(i) to
denote the maximum length of all end-aligned ascending subsequences of A[1 : i]. In our example,
len(16) = 5 because (5, 20, 30, 40, 44) is a longest end-aligned ascending subsequence of A, but

2



len(15) = 8 because (10, 20, 30, 40, 50, 60, 70, 80) is longest end-aligned ascending subsequence of
A[1 : 15].

Let B be an (arbitrary) longest end-aligned ascending subsequence of A[1 : i], and define k to
be the length of B. There are two possibilities.

• k = 1. This implies that A[j] > A[i] for all j < i.

• k > 1. In this case, let j be the integer such that B[k − 1] = A[j]. Then, B[1 : k − 1] must be
an end-aligned longest subsequence of A[1 : j].

Given an i ∈ [1, n], define S(i) = {j | j < i and A[j] < A[i]}. The above discussion implies:

len(i) = 1 + max
j∈S(i)

len(j)

Using dynamic programming, we can compute len(i) for all i ∈ [1, n] in O(n2) time.

The maximum length of all ascending subsequences of A is

n
max
i=1

len(i).

By the “piggyback technique”, we can produce a longest ascending subsequence of A in O(n2) extra
time.

Problem 5*. In this problem, we will revisit a regular exercise discussed before and derive a faster
algorithm using dynamic programming.

Let A be an array of n integers (A is not necessarily sorted). Each integer in A may be
positive or negative. Given i, j satisfying 1 ≤ i ≤ j ≤ n, define subarray A[i : j] as the sequence
(A[i], A[i+1], ..., A[j]), and the weight of A[i : j] as A[i] +A[i+1]+ ...+A[j]. For example, consider
A = (13,−3,−25, 20,−3,−16,−23, 18); A[1 : 4] has weight 5, while A[2 : 4] has weight −8. Design
an algorithm to find a subarray of A with the largest weight in O(n) time.

Remark: We solved the problem using divide-and-conquer in O(n log n) time before.

Solution. Given a subarray A[i : j], we refer to j as the subarray’s ending position. For each
k ∈ [1, n], define maxwght(k) as the largest weight of all the subarrays whose ending positions are k.
It holds that

maxwght(k) =


A[k] if k = 1

A[k] if k > 1 and maxwght(k − 1) ≤ 0

maxwght(k − 1) +A[k] if k > 1 and maxwght(k − 1) > 0

The above obviously holds for k = 1. Next, we will prove its correctness for k > 1. Let t ∈ [1, k]
be an integer that maximizes the weight of A[t : k].

Consider first the scenario where maxwght(k− 1) ≤ 0. Suppose (for contradiction purposes) that
t < k. Then, the weight of A[t : k − 1], which cannot exceed maxwght(k − 1), must be non-positive.
Hence, the weight of A[t : k] is at most A[k : k]. This implies that the weight of A[t : k] — which is
maxwght(k) — must be exactly A[k], establishing the second branch in the definition.

Finally, consider maxwght(k − 1) > 0. Let t′ be an integer such that the weight of A[t′ : k − 1]
equals maxwght(k − 1). As A[t′ : k] has a larger weight than A[k : k], we can assert that t < k.
Next, we argue that A[t : k − 1] and A[t′ : k − 1] must have the same weight, i.e., maxwght(k − 1).

3



Otherwise, A[t : k − 1] has a lower weight than A[t′ : k − 1], because of which A[t : k] has a lower
weight than A[t′ : k], contradicting the role of t. This establishes the third branch of the definition.

Using dynamic programming, we can calculate maxwght(k) for all k ∈ [1, n] in O(n) time. The
maximum weight of all the subarrays of A equals

n
max
k=1

maxwght(k)

which can also be obtained in O(n) time. By resorting to the “piggyback” technique, we can obtain
a subarray with the maximum weight in O(n) extra time.

4


