CSCI3160: Regular Exercise Set 7

Prepared by Yufei Tao

Problem 1. Let x and y be two strings of length n and m, respectively. Suppose that $x[n]=y[m]$. Prove: the following are true for any LCS z of x and y :

- Let k be the length of z. It holds that $z[k]=x[n]=y[m]$.
- $z[1: k-1]$ is an LCS of $x[1: n-1]$ and $y[1: m-1]$.

Solution. Proof of the first bullet. Let G be a correspondence graph induced by z (as defined in our lecture) and let e be the rightmost edge of G. If $z[k] \neq x[n]$ (and hence $z[k] \neq y[m]$), then e cannot be incident on $x[n]$, and e cannot be incident on $y[m]$. We can therefore add another edge to G by connecting $x[n]$ and $y[m]$. The new graph implies a common subsequence of x and y that is longer than z, giving a contradiction.

Proof of the second bullet. This is in fact a corollary of the first bullet. Suppose that $z[1: k-1]$ is not an LCS of $x[1: n-1]$ and $y[1: m-1]$. Then, identify any LCS z^{\prime} of $x[1: n-1]$ and $y[1: m-1]$, which is longer than z. Thus, $z^{\prime} \circ x[n]$ (where \circ is the "concatenation" operator) is an LCS of x and y. As z^{\prime} is longer than z, we now have a contradiction.

Problem 2. Let x be a string of length n, and y a string of length m. Define opt (i, j) to be the length of an LCS of $x[1: i]$ and $y[1: j]$ for $i \in[0, n]$ and $j \in[0, m]$. In the lecture, we already discussed how to calculate opt (i, j) for all possible (i, j) pairs. Based on that discussion, explain an algorithm that can output an LCS of x and y in $O(n m)$ time.

Solution. Recall:

$$
\operatorname{opt}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{opt}(i-1, j-1)+1 & \text { if } i, j>0 \text { and } x[i]=y[j] \\ \max \{\operatorname{opt}(i, j-1), \operatorname{opt}(i-1, j)\} & \text { if } i, j>0 \text { and } x[i] \neq y[j]\end{cases}
$$

We will now apply the "piggyback technique" discussed in the lecture to generate an LCS. For this purpose, let us define

$$
\operatorname{bestSub}(i, j)= \begin{cases}\text { nil } & \text { if } i=0 \text { or } j=0 \\ \text { nil } & \text { if } i, j>0 \text { and } x[i]=y[j] \\ \operatorname{shrink~x~} & \text { if } i, j>0, x[i] \neq y[j], \text { and } \operatorname{opt}(i-1, j) \geq o p t(i, j-1) \\ \operatorname{shrink} \mathrm{y} & \text { if } i, j>0, x[i] \neq y[j], \text { and } \operatorname{opt}(i-1, j)<\operatorname{opt}(i, j-1)\end{cases}
$$

After computing $\operatorname{opt}(i, j)$ for all (i, j) pairs, we can compute each $\operatorname{bestSub}(i, j)$ in constant time. The total time is $O(n m)$.

We can now construct an LCS z of x and y as follows. First, if x or y is the empty string, set z to the empty string. Second, if $x[n]=y[m]$, recursively obtain an LCS z^{\prime} of $x[1: n-1]$ and $y[1: m-1]$ and then set $z=z^{\prime} \circ x[n]$, where \circ means concatenation. Finally, if $x[n] \neq y[m]$, we act differently according to $\operatorname{bestSub}(n, m)$:

- If it is "shrink x ", we recursively obtain an $\operatorname{LCS} z^{\prime}$ of $x[1: n-1]$ and y and then set $z=z^{\prime}$.
- If it is "shrink y ", we recursively obtain an LCS z^{\prime} of x and $y[1: m-1]$ and then set $z=z^{\prime}$.

Problem 3 (Matrix-Chain Multiplication). The goal in this problem is to calculate $\boldsymbol{A}_{1} \boldsymbol{A}_{2} \ldots \boldsymbol{A}_{n}$ where \boldsymbol{A}_{i} is an $a_{i} \times b_{i}$ matrix for $i \in[1, n]$. This implies that $b_{i-1}=a_{i}$ for $i \in[2, n]$, and the final result is an $a_{1} \times b_{n}$ matrix. You are given an algorithm \mathcal{A} that, given an $a \times b$ matrix \boldsymbol{A} and a $b \times c$ matrix \boldsymbol{B}, can calculate $\boldsymbol{A} \boldsymbol{B}$ in $O(a b c)$ time. To calculate $\boldsymbol{A}_{1} \boldsymbol{A}_{2} \ldots \boldsymbol{A}_{n}$, you can apply parenthesization, namely, convert the expression to $\left(\boldsymbol{A}_{1} \ldots \boldsymbol{A}_{i}\right)\left(\boldsymbol{A}_{i+1} \ldots \boldsymbol{A}_{n}\right)$ for some $i \in[1, n-1]$, and then parenthesize each of $\boldsymbol{A}_{1} \ldots \boldsymbol{A}_{i}$ and $\boldsymbol{A}_{i+1} \ldots \boldsymbol{A}_{n}$ recursively. A fully parenthesized product is

- either a single matrix or
- the product of two fully parenthesized products.

For example, if $n=4$, then $\left(\boldsymbol{A}_{1} \boldsymbol{A}_{2}\right)\left(\boldsymbol{A}_{3} \boldsymbol{A}_{4}\right)$ and $\left(\left(\boldsymbol{A}_{1} \boldsymbol{A}_{2}\right) \boldsymbol{A}_{3}\right) \boldsymbol{A}_{4}$ are fully parenthesized, but $\boldsymbol{A}_{1}\left(\boldsymbol{A}_{2} \boldsymbol{A}_{3} \boldsymbol{A}_{4}\right)$ is not. Each fully parenthesized product has a computation cost under \mathcal{A}; e.g., given $\left(\boldsymbol{A}_{1} \boldsymbol{A}_{2}\right)\left(\boldsymbol{A}_{3} \boldsymbol{A}_{4}\right)$, you first calculate $\boldsymbol{B}_{1}=\boldsymbol{A}_{1} \boldsymbol{A}_{2}$ and $\boldsymbol{B}_{2}=\boldsymbol{A}_{3} \boldsymbol{A}_{4}$, and then calculate $\boldsymbol{B}_{1} \boldsymbol{B}_{2}$, all using \mathcal{A}. The cost of the fully parenthesized product is the total cost of the three pairwise matrix multiplications.

Design an algorithm to find in $O\left(n^{3}\right)$ time a fully parenthesized product with the smallest cost.
Solution. Given i, j satisfying $1 \leq i \leq j \leq n$, we define $\operatorname{cost}(i, j)$ to be the smallest achievable cost for calculating $\boldsymbol{A}_{i} \boldsymbol{A}_{i+1} \ldots \boldsymbol{A}_{j}$ with parenthesization. Our objective is to calculate $\operatorname{cost}(1, n)$.

A key observation is that $\boldsymbol{B}_{1}=\boldsymbol{A}_{i} \ldots \boldsymbol{A}_{k}$ is an $a_{i} \times b_{k}$ matrix and $\boldsymbol{B}_{2}=\boldsymbol{A}_{k+1} \ldots \boldsymbol{A}_{j}$ is an $a_{k+1} \times b_{j}$ matrix (where $\left.b_{k}=a_{k+1}\right)$; so it takes $O\left(a_{i} b_{k} b_{j}\right)$ time to compute $\boldsymbol{B}_{1} \boldsymbol{B}_{2}$. This means that if we start with the parenthesization $\left(\boldsymbol{A}_{i} \ldots \boldsymbol{A}_{k}\right)\left(\boldsymbol{A}_{k+1} \ldots \boldsymbol{A}_{j}\right)$, the best achievable cost is $\operatorname{cost}(i, k)+\operatorname{cost}(k+$ $1, j)+O\left(a_{i} b_{k} b_{j}\right)$. This implies:

$$
\operatorname{cost}(i, j)= \begin{cases}O(1) & \text { if } i=j \\ \min _{k=i}^{j-1}\left(\operatorname{cost}(i, k)+\operatorname{cost}(k+1, j)+O\left(a_{i} b_{k} b_{j}\right)\right) & \text { if } i<j\end{cases}
$$

Using dynamic programming, we can compute $\operatorname{cost}(1, n)$ in $O\left(n^{3}\right)$ time. Using the "piggyback technique", we can produce an optimal parenthesization in $O\left(n^{3}\right)$ extra time.

Problem 4 (Longest Ascending Subsequence). Let A be a sequence of n distinct integers. A sequence B of integers is a subsequence of A if it satisfies one of the following conditions:

- $A=B$ or
- we can convert A to B by repeatedly deleting integers.

The subsequence B is ascending if its integers are arranged in ascending order. Design an algorithm to find an ascending subsequence of A with the maximum length. Your algorithm should run in $O\left(n^{2}\right)$ time. For example, if $A=(10,5,20,17,3,30,25,40,50,60,24,55,70,58,80,44)$, then a longest ascending sequence is $(10,20,30,40,50,60,70,80)$.

Solution. We say that B is an end-aligned ascending subsequence of A if $A[n]$ is the last integer in B. In the example given in the problem statement, ($5,20,30,40,44)$ is an end-aligned ascending subsequence of A, while $(10,20,30,40,50,60,70,80)$ is not. Given an $i \in[1, n]$, we use $\operatorname{len}(i)$ to denote the maximum length of all end-aligned ascending subsequences of $A[1: i]$. In our example, $\operatorname{len}(16)=5$ because $(5,20,30,40,44)$ is a longest end-aligned ascending subsequence of A, but
$\operatorname{len}(15)=8$ because $(10,20,30,40,50,60,70,80)$ is longest end-aligned ascending subsequence of $A[1: 15]$.

Let B be an (arbitrary) longest end-aligned ascending subsequence of $A[1: i]$, and define k to be the length of B. There are two possibilities.

- $k=1$. This implies that $A[j]>A[i]$ for all $j<i$.
- $k>1$. In this case, let j be the integer such that $B[k-1]=A[j]$. Then, $B[1: k-1]$ must be an end-aligned longest subsequence of $A[1: j]$.

Given an $i \in[1, n]$, define $S(i)=\{j \mid j<i$ and $A[j]<A[i]\}$. The above discussion implies:

$$
\operatorname{len}(i)=1+\max _{j \in S(i)} \operatorname{len}(j)
$$

Using dynamic programming, we can compute len (i) for all $i \in[1, n]$ in $O\left(n^{2}\right)$ time.
The maximum length of all ascending subsequences of A is

$$
\max _{i=1}^{n} \operatorname{len}(i) .
$$

By the "piggyback technique", we can produce a longest ascending subsequence of A in $O\left(n^{2}\right)$ extra time.

Problem 5*. In this problem, we will revisit a regular exercise discussed before and derive a faster algorithm using dynamic programming.

Let A be an array of n integers (A is not necessarily sorted). Each integer in A may be positive or negative. Given i, j satisfying $1 \leq i \leq j \leq n$, define subarray $A[i: j]$ as the sequence $(A[i], A[i+1], \ldots, A[j])$, and the weight of $A[i: j]$ as $A[i]+A[i+1]+\ldots+A[j]$. For example, consider $A=(13,-3,-25,20,-3,-16,-23,18) ; A[1: 4]$ has weight 5 , while $A[2: 4]$ has weight -8 . Design an algorithm to find a subarray of A with the largest weight in $O(n)$ time.

Remark: We solved the problem using divide-and-conquer in $O(n \log n)$ time before.
Solution. Given a subarray $A[i: j]$, we refer to j as the subarray's ending position. For each $k \in[1, n]$, define maxwght (k) as the largest weight of all the subarrays whose ending positions are k. It holds that

$$
\operatorname{maxwght}(k)= \begin{cases}A[k] & \text { if } k=1 \\ A[k] & \text { if } k>1 \text { and } \operatorname{maxwght}(k-1) \leq 0 \\ \operatorname{maxwght}(k-1)+A[k] & \text { if } k>1 \text { and } \operatorname{maxwght}(k-1)>0\end{cases}
$$

The above obviously holds for $k=1$. Next, we will prove its correctness for $k>1$. Let $t \in[1, k]$ be an integer that maximizes the weight of $A[t: k]$.

Consider first the scenario where maxwght $(k-1) \leq 0$. Suppose (for contradiction purposes) that $t<k$. Then, the weight of $A[t: k-1]$, which cannot exceed $\operatorname{maxwght}(k-1)$, must be non-positive. Hence, the weight of $A[t: k]$ is at most $A[k: k]$. This implies that the weight of $A[t: k]$ - which is $\operatorname{maxwght}(k)$ - must be exactly $A[k]$, establishing the second branch in the definition.

Finally, consider maxwght $(k-1)>0$. Let t^{\prime} be an integer such that the weight of $A\left[t^{\prime}: k-1\right]$ equals maxwght $(k-1)$. As $A\left[t^{\prime}: k\right]$ has a larger weight than $A[k: k]$, we can assert that $t<k$. Next, we argue that $A[t: k-1]$ and $A\left[t^{\prime}: k-1\right]$ must have the same weight, i.e., $\operatorname{maxwght}(k-1)$.

Otherwise, $A[t: k-1]$ has a lower weight than $A\left[t^{\prime}: k-1\right]$, because of which $A[t: k]$ has a lower weight than $A\left[t^{\prime}: k\right]$, contradicting the role of t. This establishes the third branch of the definition.

Using dynamic programming, we can calculate maxwght (k) for all $k \in[1, n]$ in $O(n)$ time. The maximum weight of all the subarrays of A equals

$$
\max _{k=1}^{n} \operatorname{maxwght}(k)
$$

which can also be obtained in $O(n)$ time. By resorting to the "piggyback" technique, we can obtain a subarray with the maximum weight in $O(n)$ extra time.

