CSCI3160: Regular Exercise Set 6

Prepared by Yufei Tao

Problem 1*. Let A be an array of n integers. Define a function $f(x)$ - where $x \geq 0$ is an integer - as follows:

$$
f(x)= \begin{cases}0 & \text { if } x=0 \\ \max _{i=1}^{x}(A[i]+f(x-i)) & \text { otherwise }\end{cases}
$$

Consider the following algorithm for calculating $f(x)$:
algorithm $f(x)$

1. if $x=0$ then return 0
2. $\max =-\infty$
3. for $i=1$ to x
4. $v=A[i]+f(x-i)$
5. if $v>\max$ then $\max =v$
6. return max

Prove: the above algorithm takes $\Omega\left(2^{n}\right)$ time to calculate $f(n)$.
Problem 2 (The Piggyback Technique). Recall that, for the rot cutting problem, we derived the function $\operatorname{opt}(n)$ - the optimal revenue from cutting up a rod of length n - as follows:

$$
\begin{align*}
\operatorname{opt}(0) & =0 \\
\operatorname{opt}(n) & =\max _{i=1}^{n} P[i]+\operatorname{opt}(n-i) \tag{1}
\end{align*}
$$

For $n \geq 1$, define $\operatorname{bestSub}(n)=k$ if the maximization in (1) is obtained at $i=k$. Answer the following questions:

- Explain how to compute bestSub (t) for all $t \in[1, n]$ in $O\left(n^{2}\right)$ time.
- Assume that bestSub (t) has been computed for all $t \in[1, n]$. Explain how to output an optimal way to cut the rod in $O(n)$ time.

Problem 3*. Let A be an array of n integers. Define function $f(a, b)$ - where $a \in[1, n]$ and $b \in[1, n]$ - as follows:

$$
f(a, b)= \begin{cases}0 & \text { if } a \geq b \\ \left(\sum_{c=a}^{b} A[c]\right)+\min _{c=a+1}^{b-1}\{f(a, c)+f(c, b)\} & \text { otherwise }\end{cases}
$$

Design an algorithm to calculate $f(1, n)$ in $O\left(n^{3}\right)$ time.
Problem 4. In Lecture Notes 8, our algorithm for computing $f(n, m)$ has space complexity $O(n m)$, i.e., it uses $O(n m)$ memory cells. Reduce the space complexity to $O(n+m)$.

Problem 5*. Let $G=(V, E)$ be a directed acyclic graph (DAG). For each vertex $u \in V$, let $\operatorname{IN}(u)$ be the set of in-neighbors of u (recall that a vertex v is an in-neighbor of u if E has an edge from v to u). Define function $f: V \rightarrow \mathbb{N}$ as follows:

$$
f(u)= \begin{cases}0 & \text { if } \operatorname{IN}(u)=\emptyset \\ 1+\min _{v \in \operatorname{IN}(u)} f(v) & \text { otherwise }\end{cases}
$$

Design an algorithm to calculate $f(u)$ of every $u \in V$. Your algorithm should run in $O(|V|+|E|)$ time. You can assume that the vertices in V are represented as integers $1,2, \ldots,|V|$.

Problem 6**. Let $G=(V, E)$ be a directed acyclic graph (DAG). Design an algorithm to find the length of the longest path in G (recall that the length of a path is the number of edges in the path). Your algorithm should run in $O(|V|+|E|)$ time. You can assume that the vertices in V are represented as integers $1,2, \ldots,|V|$.

