CSCI3160: Regular Exercise Set 6

Prepared by Yufei Tao

Problem 1*. Let A be an array of n integers. Define a function $f(x)$ - where $x \geq 0$ is an integer - as follows:

$$
f(x)= \begin{cases}0 & \text { if } x=0 \\ \max _{i=1}^{x}(A[i]+f(x-i)) & \text { otherwise }\end{cases}
$$

Consider the following algorithm for calculating $f(x)$:
algorithm $f(x)$

1. if $x=0$ then return 0
2. $\max =-\infty$
3. for $i=1$ to x
4. $\quad v=A[i]+f(x-i)$
5. if $v>\max$ then $\max =v$
6. return max

Prove: the above algorithm takes $\Omega\left(2^{n}\right)$ time to calculate $f(n)$.
Solution. Let $g(x)$ denote the time of the algorithm in calculating $f(x)$. We know:

$$
\begin{aligned}
g(0) & \geq 1 \\
g(1) & \geq 1 \\
g(n) & \geq \sum_{i=0}^{n-1} g(i)
\end{aligned}
$$

We will show by induction that $g(n) \geq 2^{n-1}$ for $n \geq 1$. First, this is obviously correct when $n=1$. Next, we will prove the claim on $n=k$ for any $k \geq 2$, assuming that it is correct for all $n \leq k-1$.

$$
\begin{aligned}
g(n) & \geq \sum_{i=0}^{n-1} g(i) \\
& \geq 1+\sum_{i=1}^{n-1} g(i) \\
& \geq 1+\sum_{i=1}^{n-1} 2^{i-1} \\
& \geq 2^{n-1} .
\end{aligned}
$$

Problem 2 (The Piggyback Technique). Recall that, for the rot cutting problem, we derived the function $\operatorname{opt}(n)$ - the optimal revenue from cutting up a rod of length n - as follows:

$$
\operatorname{opt}(0)=0
$$

$$
\begin{equation*}
\operatorname{opt}(n)=\max _{i=1}^{n} P[i]+\operatorname{opt}(n-i) \tag{1}
\end{equation*}
$$

For $n \geq 1$, define $\operatorname{best} \operatorname{Sub}(n)=k$ if the maximization in (1) is obtained at $i=k$. Answer the following questions:

- Explain how to compute bestSub (t) for all $t \in[1, n]$ in $O\left(n^{2}\right)$ time.
- Assume that bestSub(t) has been computed for all $t \in[1, n]$. Explain how to output an optimal way to cut the rod in $O(n)$ time.

Solution. First, compute $o p t(t)$ for all $t \in[1, n]$ in $O\left(n^{2}\right)$ time. Then, for each $t \in[1, n]$, spend $O(t)$ time to find the value $k \in[1, t]$ that maximizes $P[k]+o p t(t-k)$; after that, set bestSub $(t)=k$. The total cost of doing so for all $t \in[1, n]$ is $\sum_{t=1}^{n} O(t)=O\left(n^{2}\right)$.

We can now produce an optimal way to cut the rod as follows:

```
\(\ell \leftarrow n\)
while \(\ell>0\) do
    output "produce a segment of length bestSub \((\ell)\) "
    \(\ell \leftarrow \ell-\operatorname{bestSub}(\ell)\)
```

It is easy to see that the running time is $O(n)$.
Problem 3*. Let A be an array of n integers. Define function $f(a, b)$ - where $a \in[1, n]$ and $b \in[1, n]$ - as follows:

$$
f(a, b)= \begin{cases}0 & \text { if } a \geq b \\ \left(\sum_{c=a}^{b} A[c]\right)+\min _{c=a+1}^{b-1}\{f(a, c)+f(c, b)\} & \text { otherwise }\end{cases}
$$

Design an algorithm to calculate $f(1, n)$ in $O\left(n^{3}\right)$ time.
Solution. We will launch n rounds. In the i-th round $(i \in[1, n-1])$, we calculate all the $f(a, b)$ satisfying $1 \leq a \leq b \leq n$ and $b=a+i$. The strategy ensures that when $f(a, b)$ is computed, $f(a, c)$ and $f(c, b)$ are ready for all $c \in[a, b]$. Hence, the computation of $f(a, b)$ takes $O(n)$ time. The total running time is $O\left(n^{3}\right)$ because there are $O\left(n^{2}\right)$ values to compute.

Problem 4. In Lecture Notes 8, our algorithm for computing $f(n, m)$ has space complexity $O(n m)$, i.e., it uses $O(n m)$ memory cells. Reduce the space complexity to $O(n+m)$.

Solution. The lecture notes mentioned that we can list the subproblems in the "row-major" order. Specifically, row $i \in[0, n]$ contains all the subproblems $f(i, 0), f(i, 1), \ldots, f(i, m)$; and we process the rows in ascending order of i. Storing all the rows consumes $O(n m)$ space. Noticing that only row $i-1$ is needed to compute row $i \geq 1$. Therefore, at any moment, it suffices to store only two rows, which requires only $O(m)$ cells.

Remark: the space consumption is $O(n+m)$ (not $O(m)$) because you still need to store the input strings x and y.

Problem 5*. Let $G=(V, E)$ be a directed acyclic graph (DAG). For each vertex $u \in V$, let $\operatorname{IN}(u)$ be the set of in-neighbors of u (recall that a vertex v is an in-neighbor of u if E has an edge from v to u). Define function $f: V \rightarrow \mathbb{N}$ as follows:

$$
f(u)= \begin{cases}0 & \text { if } \operatorname{IN}(u)=\emptyset \\ 1+\min _{v \in \operatorname{IN}(u)} f(v) & \text { otherwise }\end{cases}
$$

Design an algorithm to calculate $f(u)$ of every $u \in V$. Your algorithm should run in $O(|V|+|E|)$ time. You can assume that the vertices in V are represented as integers $1,2, \ldots,|V|$.

Solution. Compute a topological order of G in $O(|V|+|E|)$ time. Then, compute the $f(u)$ values of all vertices $u \in V$ according to the vertex ordering in the topological order.

Remark: Recall that a topological order of G is an ordering of the vertices in V where each vertex $u \in V$ is positioned after every vertex $v \in \operatorname{IN}(u)$. A topological order can be obtained using depth first search in $O(|V|+|E|)$ time, which was discussed in CSCI2100. See Prof. Tao's homepage (http://www.cse.cuhk.edu.hk/~taoyf/) for the course homepage of CSCI2100.

Problem 6**. Let $G=(V, E)$ be a directed acyclic graph (DAG). Design an algorithm to find the length of the longest path in G (recall that the length of a path is the number of edges in the path). Your algorithm should run in $O(|V|+|E|)$ time. You can assume that the vertices in V are represented as integers $1,2, \ldots,|V|$.

Solution. Define function $f: V \rightarrow \mathbb{N}$ as follows:

$$
f(u)= \begin{cases}0 & \text { if } \operatorname{IN}(u)=\emptyset \\ 1+\max _{v \in \operatorname{IN}(u)} f(v) & \text { otherwise }\end{cases}
$$

The length of the longest path equals $\max _{u \in V} f(u)$. Similar to Problem 5, we can compute $f(u)$ for all $u \in V$ in $O(|V|+|E|)$ time.

