CSCI3160: Regular Exercise Set 5

Prepared by Yufei Tao

Problem 1. Let $G=(V, E)$ be a connected undirected graph where every edge carries a positive integer weight. Divide V into arbitrary disjoint subsets $V_{1}, V_{2}, \ldots, V_{t}$ for some $t \geq 2$, namely, $V_{i} \cap V_{j}=\emptyset$ for any $1 \leq i<j \leq t$ and $\bigcup_{i=1}^{t} V_{i}=V$. Define an edge $\{u, v\}$ in E as a cross edge if u and v are in different subsets. Prove: a cross edge with the smallest weight must belong to a minimum spanning tree (MST).

Problem 2* (Kruskal's Algorithm). Let $G=(V, E)$ be a connected undirected graph where every edge carries a positive integer weight. Prove that the following algorithm finds an MST of G correctly:

algorithm

1. $S=\emptyset$
2. while $|S|<|V|-1$
3. find the lightest edge $e \in E$ that does not introduce any cycle with the edges in S
4. add e to S
5. return the tree formed by the edges in S

Problem 3. Consider Σ as an alphabet. Recall that a code tree on Σ is a binary tree T satisfying both conditions below:

- Every leaf node of T is labeled with a distinct letter in Σ; conversely, every letter in Σ is the label of a distinct leaf node in T.
- For every internal node of T, its left edge (if exists) is labeled with 0 , and its right edge (if exists) with 1.

Define an encoding as a function f that maps each letter $\sigma \in \Sigma$ to a non-empty bit string, which is called the codeword of σ. T produces an encoding where the code word of a letter $\sigma \in \Sigma$ is obtained by concatenating the bit labels of the edges on the path from the root to the leaf σ. Prove:

- The encoding produces by a code tree T is a prefix code.
- Every prefix code f is produced by a code tree T.

Problem 4. Let T be an optimal code tree on an alphabet Σ (i.e., T has the smallest average height among all the code trees on Σ). Prove: every internal node of T must have two children.

Problem 5* (Textbook Exercise 16.3-7). Consider an alphabet Σ of $n \geq 3$ letters with their frequencies given. The prefix code we construct using Huffman's algorithm is binary because each letter $\sigma \in \Sigma$ is mapped to a string that consists of only 0 's and 1 's. Now, we want the code to be ternary, namely, each letter $\sigma \in \Sigma$ is mapped to a string that consists of three possible characters: 0,1 , or 2 . As before, the code must be a prefix code. Assuming n to be an odd number, give an algorithm to find an encoding with the shortest average length.

