
CSCI3160: Regular Exercise Set 5

Prepared by Yufei Tao

Problem 1. Let G = (V,E) be a connected undirected graph where every edge carries a positive
integer weight. Divide V into arbitrary disjoint subsets V1, V2, ..., Vt for some t ≥ 2, namely,
Vi ∩ Vj = ∅ for any 1 ≤ i < j ≤ t and

⋃t
i=1 Vi = V . Define an edge {u, v} in E as a cross edge if

u and v are in different subsets. Prove: a cross edge with the smallest weight must belong to a
minimum spanning tree (MST).

Solution. Immediate from the “cut property” proved in the Special Exercise List 4. Nevertheless,
we give the whole proof below.

Let e = {u, v} be a cross edge having the smallest weight. W.l.o.g., suppose that u ∈ Vi and
j ∈ Vj for some distinct i, j ∈ [1, t]. Consider an arbitrary MST T . If T contains e, we are done.
Next, we discuss the case where e is not in T .

Add e to T , which produces a cycle C. Walk on C in the following manner: start from u, cross
edge e to reach v, continue in this direction, and stop right after having crossed an edge e′ that
takes us back to a vertex in Vi. The edge e′ must be a cross edge, and hence, must be at least as
heavy as e. Deleting e′ gives an MST that contains e.

Problem 2* (Kruskal’s Algorithm). Let G = (V,E) be a connected undirected graph where
every edge carries a positive integer weight. Prove that the following algorithm finds an MST of G
correctly:

algorithm
1. S = ∅
2. while |S| < |V | − 1
3. find the lightest edge e ∈ E that does not introduce any cycle with the edges in S
4. add e to S
5. return the tree formed by the edges in S

Solution. Set n = |V |. Let e1, ..., en−1 be the edges picked by the algorithm. We claim that for
any k ∈ [1, n− 1], there is an MST that uses e1, ..., ek. The lemma then follows from the claim at
k = n− 1. The base case of k = 1 is obvious (we proved this in class). Next, assuming correctness
at k = x for some integer x ≥ 1, we will prove the claim for k = x+ 1.

Let T be an MST that includes e1, ..., ex. The existence of T is promised by the inductive
assumption. If T contains ex+1, we are done; the rest of the proof will focus on the case where
ex+1 is not in T . Consider the graph G′ = (V, {e1, ..., ex}). Denote by G1, ..., Gt the connected
components (CC) of G′ for some t ≥ 1. Let us call an edge e ∈ E a cross edge if it connects two
vertices from different CCs.

As ex+1 does not introduce any cycle with e1, ..., ex, we know that ex+1 must be a cross edge.
Now, add ex+1 into T , which gives rise to a cycle. By the same argument as in the solution to
Problem 1, we know that the cycle must contain another cross edge e′. By the way ex+1 is chosen
by the algorithm, we assert that ex+1 cannot be heavier than e′. Thus removing e′ yields another
MST; and this MST contains e1, ..., ex+1, as desired.

Problem 3. Consider Σ as an alphabet. Recall that a code tree on Σ is a binary tree T satisfying
both conditions below:
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• Every leaf node of T is labeled with a distinct letter in Σ; conversely, every letter in Σ is the
label of a distinct leaf node in T .

• For every internal node of T , its left edge (if exists) is labeled with 0, and its right edge (if
exists) with 1.

Define an encoding as a function f that maps each letter σ ∈ Σ to a non-empty bit string, which is
called the codeword of σ. T produces an encoding where the code word of a letter σ ∈ Σ is obtained
by concatenating the bit labels of the edges on the path from the root to the leaf σ. Prove:

• The encoding produces by a code tree T is a prefix code.

• Every prefix code f is produced by a code tree T .

Solution. Proof of the first bullet: If the codeword of σ1 is a prefix of the codeword of σ2, (by how
the codewords are obtained) we can assert that σ1 is an ancestor of σ2 in T . But this is impossible
because σ1 needs to be a leaf of T .

Proof of the second bullet: Define S = {f(σ) | σ ∈ Σ}, namely, S collects the codewords of all
the letters in Σ. Grow a binary tree T as follows. Initially, T has only a single leaf. Then, for each
letter σ ∈ Σ, we modify T (if necessary) as follows:

• Initially, set u to the root of T .

• Repeat the following until u is a leaf node:

– Let ℓ be the level of u.

– Descend to the left (resp., right) child v of u if the ℓ-th bit of f(σ) is 0 (res[., 1). If v
does not exist, create it in T , and label its edge with u as 0 (resp., 1).

– Set u to v.

• Mark the leaf node u with the letter σ.

The final T is a code tree that generates f .

Problem 4. Let T be an optimal code tree on an alphabet Σ (i.e., T has the smallest average
height among all the code trees on Σ). Prove: every internal node of T must have two children.

Solution. Let u be any internal node that has a single child v. Let p be the parent of u. Remove u
by making v a child of p, and label the edge {p, v} appropriately. In the special case where p does
not exist (i.e., u is the root), simply make v the new root and delete u. We now have a code tree
with strictly smaller average height.

Problem 5* (Textbook Exercise 16.3-7). Consider an alphabet Σ of n ≥ 3 letters with their
frequencies given. The prefix code we construct using Huffman’s algorithm is binary because each
letter σ ∈ Σ is mapped to a string that consists of only 0’s and 1’s. Now, we want the code to be
ternary, namely, each letter σ ∈ Σ is mapped to a string that consists of three possible characters:
0, 1, or 2. As before, the code must be a prefix code. Assuming n to be an odd number, give an
algorithm to find an encoding with the shortest average length.

Solution. We define a code tree on Σ as a ternary tree T satisfying:

• There is a one-one correspondence between the leaves of T and the letters in Σ.
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• Every internal node u of T has 3 child nodes. The left, middle, and right edges of u carry
label 0, 1, and 2, respectively.

For every letter σ ∈ Σ, the codeword for σ is obtained by concatenating the edge labels from the
root of T to the leaf σ.

Let us construct a code tree as follows. Initially, for each character σ ∈ Σ, create a tree that
contains only a single node u, which is labeled with σ. Define the frequency of u to be the frequency
of σ. In total, there are n trees; collect their roots into a set S. Repeat the following until |S| = 1:

• Remove from S the three roots u1, u2, and u3 having the smallest frequencies.

• Create a tree with root u that has u1, u2, and u3 as the child nodes. Define the frequency of u
as the frequency sum of u1, u2, and u3. This, effectively, combines the three trees — rooted
at u1, u2, and u3, respectively — into a new tree, rooted at u. Add u to S.

When |S| = 1, we have only one tree left, and this tree is a code tree on Σ. By adapting the
argument covered in class, we can prove that Σ generates a prefix code with the shortest average
length.
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