CSCI3160: Regular Exercise Set 5

Prepared by Yufei Tao

Problem 1. Let $G=(V, E)$ be a connected undirected graph where every edge carries a positive integer weight. Divide V into arbitrary disjoint subsets $V_{1}, V_{2}, \ldots, V_{t}$ for some $t \geq 2$, namely, $V_{i} \cap V_{j}=\emptyset$ for any $1 \leq i<j \leq t$ and $\bigcup_{i=1}^{t} V_{i}=V$. Define an edge $\{u, v\}$ in E as a cross edge if u and v are in different subsets. Prove: a cross edge with the smallest weight must belong to a minimum spanning tree (MST).

Solution. Immediate from the "cut property" proved in the Special Exercise List 4. Nevertheless, we give the whole proof below.

Let $e=\{u, v\}$ be a cross edge having the smallest weight. W.l.o.g., suppose that $u \in V_{i}$ and $j \in V_{j}$ for some distinct $i, j \in[1, t]$. Consider an arbitrary MST T. If T contains e, we are done. Next, we discuss the case where e is not in T.

Add e to T, which produces a cycle C. Walk on C in the following manner: start from u, cross edge e to reach v, continue in this direction, and stop right after having crossed an edge e^{\prime} that takes us back to a vertex in V_{i}. The edge e^{\prime} must be a cross edge, and hence, must be at least as heavy as e. Deleting e^{\prime} gives an MST that contains e.

Problem 2* (Kruskal's Algorithm). Let $G=(V, E)$ be a connected undirected graph where every edge carries a positive integer weight. Prove that the following algorithm finds an MST of G correctly:

algorithm

1. $S=\emptyset$
2. while $|S|<|V|-1$
3. find the lightest edge $e \in E$ that does not introduce any cycle with the edges in S
4. add e to S
5. return the tree formed by the edges in S

Solution. Set $n=|V|$. Let e_{1}, \ldots, e_{n-1} be the edges picked by the algorithm. We claim that for any $k \in[1, n-1]$, there is an MST that uses e_{1}, \ldots, e_{k}. The lemma then follows from the claim at $k=n-1$. The base case of $k=1$ is obvious (we proved this in class). Next, assuming correctness at $k=x$ for some integer $x \geq 1$, we will prove the claim for $k=x+1$.

Let T be an MST that includes e_{1}, \ldots, e_{x}. The existence of T is promised by the inductive assumption. If T contains e_{x+1}, we are done; the rest of the proof will focus on the case where e_{x+1} is not in T. Consider the graph $G^{\prime}=\left(V,\left\{e_{1}, \ldots, e_{x}\right\}\right)$. Denote by G_{1}, \ldots, G_{t} the connected components (CC) of G^{\prime} for some $t \geq 1$. Let us call an edge $e \in E$ a cross edge if it connects two vertices from different CCs.

As e_{x+1} does not introduce any cycle with e_{1}, \ldots, e_{x}, we know that e_{x+1} must be a cross edge. Now, add e_{x+1} into T, which gives rise to a cycle. By the same argument as in the solution to Problem 1, we know that the cycle must contain another cross edge e^{\prime}. By the way e_{x+1} is chosen by the algorithm, we assert that e_{x+1} cannot be heavier than e^{\prime}. Thus removing e^{\prime} yields another MST; and this MST contains e_{1}, \ldots, e_{x+1}, as desired.

Problem 3. Consider Σ as an alphabet. Recall that a code tree on Σ is a binary tree T satisfying both conditions below:

- Every leaf node of T is labeled with a distinct letter in Σ; conversely, every letter in Σ is the label of a distinct leaf node in T.
- For every internal node of T, its left edge (if exists) is labeled with 0 , and its right edge (if exists) with 1.

Define an encoding as a function f that maps each letter $\sigma \in \Sigma$ to a non-empty bit string, which is called the codeword of σ. T produces an encoding where the code word of a letter $\sigma \in \Sigma$ is obtained by concatenating the bit labels of the edges on the path from the root to the leaf σ. Prove:

- The encoding produces by a code tree T is a prefix code.
- Every prefix code f is produced by a code tree T.

Solution. Proof of the first bullet: If the codeword of σ_{1} is a prefix of the codeword of σ_{2}, (by how the codewords are obtained) we can assert that σ_{1} is an ancestor of σ_{2} in T. But this is impossible because σ_{1} needs to be a leaf of T.

Proof of the second bullet: Define $S=\{f(\sigma) \mid \sigma \in \Sigma\}$, namely, S collects the codewords of all the letters in Σ. Grow a binary tree T as follows. Initially, T has only a single leaf. Then, for each letter $\sigma \in \Sigma$, we modify T (if necessary) as follows:

- Initially, set u to the root of T.
- Repeat the following until u is a leaf node:
- Let ℓ be the level of u.
- Descend to the left (resp., right) child v of u if the ℓ-th bit of $f(\sigma)$ is 0 (res[., 1). If v does not exist, create it in T, and label its edge with u as 0 (resp., 1).
- Set u to v.
- Mark the leaf node u with the letter σ.

The final T is a code tree that generates f.
Problem 4. Let T be an optimal code tree on an alphabet Σ (i.e., T has the smallest average height among all the code trees on Σ). Prove: every internal node of T must have two children.

Solution. Let u be any internal node that has a single child v. Let p be the parent of u. Remove u by making v a child of p, and label the edge $\{p, v\}$ appropriately. In the special case where p does not exist (i.e., u is the root), simply make v the new root and delete u. We now have a code tree with strictly smaller average height.

Problem 5* (Textbook Exercise 16.3-7). Consider an alphabet Σ of $n \geq 3$ letters with their frequencies given. The prefix code we construct using Huffman's algorithm is binary because each letter $\sigma \in \Sigma$ is mapped to a string that consists of only 0's and 1's. Now, we want the code to be ternary, namely, each letter $\sigma \in \Sigma$ is mapped to a string that consists of three possible characters: 0,1 , or 2 . As before, the code must be a prefix code. Assuming n to be an odd number, give an algorithm to find an encoding with the shortest average length.

Solution. We define a code tree on Σ as a ternary tree T satisfying:

- There is a one-one correspondence between the leaves of T and the letters in Σ.
- Every internal node u of T has 3 child nodes. The left, middle, and right edges of u carry label 0,1 , and 2 , respectively.

For every letter $\sigma \in \Sigma$, the codeword for σ is obtained by concatenating the edge labels from the root of T to the leaf σ.

Let us construct a code tree as follows. Initially, for each character $\sigma \in \Sigma$, create a tree that contains only a single node u, which is labeled with σ. Define the frequency of u to be the frequency of σ. In total, there are n trees; collect their roots into a set S. Repeat the following until $|S|=1$:

- Remove from S the three roots u_{1}, u_{2}, and u_{3} having the smallest frequencies.
- Create a tree with root u that has u_{1}, u_{2}, and u_{3} as the child nodes. Define the frequency of u as the frequency sum of u_{1}, u_{2}, and u_{3}. This, effectively, combines the three trees - rooted at u_{1}, u_{2}, and u_{3}, respectively - into a new tree, rooted at u. Add u to S.

When $|S|=1$, we have only one tree left, and this tree is a code tree on Σ. By adapting the argument covered in class, we can prove that Σ generates a prefix code with the shortest average length.

