CSCI3160: Regular Exercise Set 4

Prepared by Yufei Tao

Problem 1. Recall that a tree is a connected graph without cycles. Prove:

- Every tree has at least a leaf node, i.e., a node with degree 1 (i.e., a node incident to only one edge).
- Every tree with n nodes has precisely $n-1$ edges.

Solution. Proof of the first statement: Start from an arbitrary node u. If u is not a leaf, then walk across one of its edges to reach a neighbor node, and delete the edge that was crossed. Then, set u to that neighbor node, and repeat the process. In this process, every node will be encountered at most once (if a node is seen twice, there must be a cycle, and hence cause a contradiction). Since the tree has a finite number of nodes, the process must come to an end eventually. The last node reached must be a leaf.

Proof of the second statement: We will prove the claim by induction on n. When $n=2$, the tree has only one edge; and the claim is clearly true. Next, assuming the claim's correctness for $n=k$, we will prove that it also holds for any tree T with $n=k+1$ nodes. From the first statement, we know that there must be a leaf node u in T. Remove u from T and the only edge incident to u. The remaining tree has k nodes which, by the inductive assumption, must have $k-1$ edges. It thus follows that T has k edges.

Problem 2. Let G be a simple graph with n vertices and $n-1$ edges. Prove: if G is connected (i.e., a path exists between any two vertices in G), then G must be a tree.

Solution. Consider an arbitrary spanning tree T of G. Because G is connected, T must include all the n vertices of G. From the statements of Problem 1, we know that T must have $n-1$ edges. This means that T has all the edges of G and, hence, $G=T$.

Problem 3 (one for one, still a tree). Let T be a tree. Add a new edge between two vertices in T; this gives us a graph G with a cycle cyc. Now, remove from G an arbitrary edge e^{\prime} of $c y c$; let G^{\prime} be the graph thus obtained. Prove: G^{\prime} is a tree.

Solution. Let n be the number of vertices in T. It is clear that G^{\prime} has $n-1$ edges. Next, we will prove that G^{\prime} is connected (i.e., a path exists between any two of its vertices), which (by the statement of Problem 2) shows that G^{\prime} is a tree.

Let u and v be two arbitrary vertices in G^{\prime}. Consider an arbitrary path π from u to v in G (this path must exist because G is connected). If π does not use edge e^{\prime} (i.e., the edge deleted), then π exists in G^{\prime} and, hence, u and v are connected in G^{\prime}. Now, consider the case where e^{\prime} is in π. Assume, without loss of generality, that $e^{\prime}=\left\{u^{\prime}, v^{\prime}\right\}$ and that π goes from u to u^{\prime}, crosses e^{\prime} to v^{\prime}, and then continues onto v^{\prime}. This means that, in G^{\prime}, u is connected to u^{\prime} and v is connected to v^{\prime}. It remains to prove that u^{\prime} is connected to v^{\prime} in G^{\prime}, which will tell us that u is connected to v in G^{\prime}.

Remember that e^{\prime} is in the cycle cyc. This implies that, in cyc, we can find a path from u^{\prime} to v^{\prime} that does not pass through e^{\prime}. This path must still remain in G^{\prime}. Therefore, we conclude that u^{\prime} is connected to v^{\prime} in G^{\prime}.

Problem 4. Let S be a set of integer pairs of the form $(i d, v)$. We will refer to the first field as the $i d$ of the pair, and the second as the key of the pair. Design a data structure that supports the following operations:

- Insert: add a new pair $(i d, v)$ to S (you can assume that S does not already have a pair with the same id).
- Delete: given an integer t, delete the pair $(i d, v)$ from S where $t=i d$, if such a pair exists.
- DeleteMin: remove from S the pair with the smallest key, and return it. .

Your structure must consume $O(n)$ space, and support all operations in $O(\log n)$ time where $n=|S|$.
Solution. Maintain S in two binary search trees T_{1} and T_{2}, where the pairs are indexed on ids in T_{1}, and on keys in T_{2}. We support the three operations as follows:

- Insert: simply insert the new pair $(i d, v)$ into both T_{1} and T_{2}.
- Delete: first find the pair with id t in T_{1}, from which we know the key v of the pair. Now, delete the pair (t, v) from both T_{1} and T_{2}.
- DeleteMin: find the pair with the smallest key v from T_{2} (which can be found by continuously descending into left child nodes). Now we have its id t as well. Remove (t, v) from T_{1} and T_{2}.

Problem 5. Prove: in a weighted undirected graph $G=(V, E)$ where all the edges have distinct weights, the minimum spanning tree (MST) is unique.

Solution. We will prove that the tree T returned by the Prim's algorithm is the only MST. Set $n=|V|$. Let $e_{1}, e_{2}, \ldots, e_{n-1}$ be the sequence of edges that the algorithm adds to T. Suppose, on the contrary, that there is another MST T^{\prime}. Let k be the smallest i such that e_{i} is not in T^{\prime}.

- Case 1: $k=1$. This means that e_{1}, which is the edge with the smallest weight, is not in T^{\prime}. Add e_{1} to T^{\prime} to create a cycle, and remove from the cycle the edge with the largest weight. This create another spanning tree whose cost is strictly smaller than T^{\prime} (remember: all the edges are distinct), contradicting the fact that T^{\prime} is an MST.
- Case 2: $k>1$. Recall that edges $e_{1}, e_{2}, \ldots, e_{k-1}$ form a tree. Let S be the set of vertices in this tree. Add $e_{k}=\{u, v\}$ into T^{\prime} to create a cycle. Suppose $u \in S$; it follows that $v \notin S$. Let us walk on the cycle from v, by going into S, traveling within S, and stopping as soon as we exit S. Let $\left\{u^{\prime}, v^{\prime}\right\}$ be the last edge crossed (namely, one of u^{\prime}, v^{\prime} is in S, while the other one is not). By the way Prim's algorithm runs and the fact that all edges have distinct weights, we know that $\{u, v\}$ has a smaller weight than $\left\{u^{\prime}, v^{\prime}\right\}$. Thus, removing $\left\{u^{\prime}, v^{\prime}\right\}$ from T^{\prime} gives spanning tree with strictly smaller cost, which creates a contradiction.

Problem 6. Describe how to implement the Prim's algorithm on a graph $G=(V, E)$ in $O((|V|+$ $|E|) \cdot \log |V|)$ time.

Solution. Remember that the algorithm incrementally grows a tree T which in the end becomes an MST. Let S be the set of vertices that are currently in T. At all times, the algorithm maintains, for every vertex $v \in V \backslash S$, its lightest cross edge $\operatorname{best}-\operatorname{cross}(v)$ and the weight of this edge.

We maintain a set P of triples, one for every vertex $u \in V \backslash S$. Specifically, the triple of u has the form (u, v, t), indicating that best-cross (u) is the edge $\{u, v\}$ (i.e., $v \in S$), whose weight is t. We need the following operations on P :

- $\operatorname{Insert}(u, v, t):$ add a triple (u, v, t) to P.
- DecreaseKey $\left(u,\left\{u, v^{\prime}\right\}\right)$: given a vertex $u \notin S$ and a cross edge $\left\{u, v^{\prime}\right\}$ (i.e., $v^{\prime} \in S$), this operation does the following. First, fetch the triple (u, v, t) in P. Then, compare t to the weight t^{\prime} of $\left\{u, v^{\prime}\right\}$. If $t^{\prime}<t$, update the triple (u, v, t) to ($u, v^{\prime}, t^{\prime}$); otherwise, do nothing.
- DeleteMin: Remove from P the triple (u, v, t) with the smallest t.

We can store P in a data structure of Problem 4 which supports all operations in $O(\log |V|)$ time (note: DecreaseKey can be implemented as a Delete followed by an Insert). Besides the above structure, we also store an array A of length $|V|$ to so that we can query in constant time, for any vertex $v \in V$, whether v is in S currently.

Now we can implement the algorithm as follows. Let $\{x, y\}$ be an edge with the smallest weight in G. The set S contains only x and y at this point. For every vertex $u \in V \backslash S$ where $S=\{x, y\}$, we check whether u has cross edges to x and y. If neither edge exists, insert triple ($u, n i l, \infty$) to P. Otherwise, suppose without loss of generality that $\{u, x\}$ is the lighter cross edge of u, and it has weight t; insert a triple (u, x, t) into P.

Repeat the following until P is empty:

- Perform a DeleteMin to obtain a triple (x, y, t).
- Recall that vertex x should be added to S, which may need to change the cross edges of some other vertices. To implement this, for every edge $\{x, y\}$ of x with $y \notin S$, perform $\operatorname{DecreaseKey}(y,\{y, x\})$.

