CSCI3160: Regular Exercise Set 3

Prepared by Yufei Tao
Problem 1. Let S be a set of n intervals $\left\{\left[s_{i}, f_{i}\right] \mid 1 \leq i \leq n\right\}$, satisfying $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Denote by S^{\prime} the set of intervals in S that are disjoint with $\left[s_{1}, f_{1}\right]$. Prove: if $T^{\prime} \subseteq S^{\prime}$ is an optimal solution to the activity selection problem on S^{\prime}, then $T^{\prime} \cup\left\{\left[s_{1}, f_{1}\right]\right\}$ is an optimal solution to the activity selection problem on S.

Problem 2. Describe how to implement the activity selection algorithm discussed in the lecture in $O(n \log n)$ time, where n is the number of input intervals.

Problem 3. Prof. Goofy proposes the following greedy algorithm to "solve" the activity selection problem. Let S be the input set of intervals. Initialize an empty T, and then repeat the following steps until S is empty:

- (Step 1) Add to T the interval $I=[s, f]$ in S that has the smallest s-value.
- (Step 2) Remove from S all the intervals overlapping with I (including I itself).

Finally, return T as the answer.
Prove: the above algorithm does not guarantee an optimal solution.
Problem 4**. Prof. Goofy just won't give up! This time he proposes a more sophisticated greedy algorithm. Again, let S be the input set of intervals. Initialize an empty T, and then repeat the following steps until S is empty:

- (Step 1) Add to T the interval $I \in S$ that overlaps with the fewest other intervals in S.
- (Step 2) Remove from S the interval I as well as all the intervals that overlap with I.

Finally, return T as the answer.
Prove: the above algorithm does not guarantee an optimal solution.
Problem 5* (Fractional Knapsack). Let $\left(w_{1}, v_{1}\right),\left(w_{2}, v_{2}\right), \ldots,\left(w_{n}, v_{n}\right)$ be n pairs of positive real values. Given a real value $W \leq \sum_{i=1}^{n} w_{i}$, design an algorithm to find $x_{1}, x_{2}, \ldots, x_{n}$ to maximize the objective function

$$
\sum_{i=1} \frac{x_{i}}{w_{i}} \cdot v_{i}
$$

subject to

- $0 \leq x_{i} \leq w_{i}$ for every $i \in[1, n]$;
- $\sum_{i=1}^{n} x_{i} \leq W$.

Remark: You can imagine, for each $i \in[1, n]$ that the value w_{i} is the 'weight' of a certain item, and v_{i} is the item's 'value'. The goal is to maximize the total value of the items we collect, subject to the constraint that all the items must weight no more than W in total. For each item, we are allowed to take only a fraction of it, which reduces its weight and value by proportion.

