CSCI3160: Regular Exercise Set 3

Prepared by Yufei Tao
Problem 1. Let S be a set of n intervals $\left\{\left[s_{i}, f_{i}\right] \mid 1 \leq i \leq n\right\}$, satisfying $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Denote by S^{\prime} the set of intervals in S that are disjoint with $\left[s_{1}, f_{1}\right]$. Prove: if $T^{\prime} \subseteq S^{\prime}$ is an optimal solution to the activity selection problem on S^{\prime}, then $T^{\prime} \cup\left\{\left[s_{1}, f_{1}\right]\right\}$ is an optimal solution to the activity selection problem on S.

Solution. We will prove the claim by contradiction. Suppose that $T^{\prime} \cup\left\{\left[s_{1}, f_{1}\right]\right\}$ is not an optimal solution to the activity selection problem on S. As proved in the class, there exists an optimal solution T (to the activity selection problem on S) which includes $\left[s_{1}, f_{1}\right]$. It thus follows that $\left|T^{\prime} \cup\left\{\left[s_{1}, f_{1}\right]\right\}\right|<|T|$ (otherwise, $T^{\prime} \cup\left\{\left[s_{1}, f_{1}\right]\right\}$ would be an optimal solution to the activity selection problem on S).

Since every interval in $T \backslash\left\{\left[s_{1}, f_{1}\right]\right\}$ is disjoint with $\left[s_{1}, f_{1}\right]$, all the intervals in $T \backslash\left\{\left[s_{1}, f_{1}\right]\right\}$ must come from S^{\prime}. As T^{\prime} is an optimal solution the activity selection problem on S^{\prime}, we know:

$$
\begin{aligned}
\left|T^{\prime}\right| & \geq\left|T \backslash\left\{\left[s_{1}, f_{1}\right]\right\}\right| \\
\Rightarrow\left|T^{\prime} \cup\left\{\left[s_{1}, f_{1}\right]\right\}\right| & \geq|T|
\end{aligned}
$$

thus causing a contradiction.
Problem 2. Describe how to implement the activity selection algorithm discussed in the lecture in $O(n \log n)$ time, where n is the number of input intervals.

Solution. Let S be the set of n intervals given, where each interval has the form $[s, f]$. Sort the intervals in ascending order the f-value. Denote the sorted order as $\left[s_{1}, f_{1}\right],\left[s_{2}, f_{2}\right], \ldots,\left[s_{n}, f_{n}\right]$ where $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Proceed as follows:

1. $T=\left\{\left[s_{1}, f_{1}\right]\right\} ;$ last $=1$
2. for $i=2$ to n
3. if $s_{i}>f_{\text {last }}$ then
4. \quad add $\left[s_{i}, f_{i}\right]$ into $T ;$ last $=i$

After sorting, the above algorithm runs in $O(n)$ time.
Problem 3. Prof. Goofy proposes the following greedy algorithm to "solve" the activity selection problem. Let S be the input set of intervals. Initialize an empty T, and then repeat the following steps until S is empty:

- (Step 1) Add to T the interval $I=[s, f]$ in S that has the smallest s-value.
- (Step 2) Remove from S all the intervals overlapping with I (including I itself).

Finally, return T as the answer.
Prove: the above algorithm does not guarantee an optimal solution.
Solution. Here is a counterexample: $S=\{[1,10],[2,3],[4,5]\}$. Prof. Goofy's algorithm returns $\{[1,10]\}$, while the optimal solution is $S=\{[2,3],[4,5]\}$.

Problem 4**. Prof. Goofy just won't give up! This time he proposes a more sophisticated greedy algorithm. Again, let S be the input set of intervals. Initialize an empty T, and then repeat the following steps until S is empty:

- (Step 1) Add to T the interval $I \in S$ that overlaps with the fewest other intervals in S.
- (Step 2) Remove from S the interval I as well as all the intervals that overlap with I.

Finally, return T as the answer.
Prove: the above algorithm does not guarantee an optimal solution.
Solution. The following nice counterexample is by courtesy of the site http://mypathtothe $4 . b l o g s p o t . c o m / 2013 / 03 / g r e e d y-a l g o r i t h m s-a c t i v i t y-s e l e c t i o n . h t m l . ~$

$$
S=\{[1,10],[2,22],[3,23],[20,30],[25,45],[40,50],[47,62],[48,63],[60,70]\}
$$

Prof. Goofy's algorithm returns 3 intervals (one of them must be [25, 45]), while the optimal solution consists of 4 intervals.

Problem 5* (Fractional Knapsack). Let $\left(w_{1}, v_{1}\right),\left(w_{2}, v_{2}\right), \ldots,\left(w_{n}, v_{n}\right)$ be n pairs of positive real values. Given a real value $W \leq \sum_{i=1}^{n} w_{i}$, design an algorithm to find $x_{1}, x_{2}, \ldots, x_{n}$ to maximize the objective function

$$
\sum_{i=1} \frac{x_{i}}{w_{i}} \cdot v_{i}
$$

subject to

- $0 \leq x_{i} \leq w_{i}$ for every $i \in[1, n]$;
- $\sum_{i=1}^{n} x_{i} \leq W$.

Remark: You can imagine that, for each $i \in[1, n]$, the value w_{i} is the 'weight' of a certain item, and v_{i} is the item's 'value'. The goal is to maximize the total value of the items we collect, subject to the constraint that all the items must weight no more than W in total. For each item, we are allowed to take only a fraction of it, which reduces its weight and value by proportion.

Solution. Assume, w.l.o.g., that $\frac{v_{1}}{w_{1}} \geq \frac{v_{2}}{w_{2}} \geq \ldots \geq \frac{v_{n}}{w_{n}}$. Our algorithm runs as follows:
for $i \leftarrow 1$ to n do
2. $\quad x_{i} \leftarrow \min \left\{W, w_{i}\right\}$
3. $W \leftarrow W-x_{i}$

Next, we prove the algorithm returns an optimal solution. Consider an arbitrary optimal solution $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}$. Observe that $\sum_{i=1}^{n} x_{i}^{*}$ must be exactly W (think: why?).

Suppose that the optimal solution differs from the solution returned by our algorithm. Let t be the smallest integer such that $x_{t} \neq x_{t}^{*}$ (this means $x_{1}=x_{1}^{*}, \ldots, x_{t-1}=x_{t-1}^{*}$). By how our algorithm runs, we know $x_{t}>x_{t}^{*}$. Define $\Delta=x_{t}-x_{t}^{*}$.

We argue that $x_{t+1}^{*}+x_{t+2}^{*}+\ldots+x_{n}^{*} \geq \Delta$. If this is not true, then

$$
\begin{aligned}
\left(\sum_{i=1}^{t-1} x_{i}^{*}\right)+\left(\sum_{i=t}^{n} x_{i}^{*}\right) & =\left(\sum_{i=1}^{t-1} x_{i}\right)+\left(x_{t}-\Delta\right)+\left(\sum_{i=t+1}^{n} x_{i}^{*}\right) \\
& <\left(\sum_{i=1}^{t-1} x_{i}\right)+\left(x_{t}-\Delta\right)+\Delta \\
& =\left(\sum_{i=1}^{t-1} x_{i}\right)+x_{t} \\
& \leq W
\end{aligned}
$$

This means $\sum_{i=1}^{n} x_{i}^{*}$ is strictly less than W, giving a contradiction.
We now adjust the optimal solution as follows:

- First, increase x_{t}^{*} by Δ to make $x_{t}^{*}=x_{t}$.
- Second, reduce a total amount of Δ arbitrarily from $x_{t+1}^{*}, x_{t+2}^{*}, \ldots, x_{n}^{*}$. This is possible because $x_{t+1}^{*}+x_{t+2}^{*}+\ldots+x_{n}^{*} \geq \Delta$.

Because $\frac{v_{t}}{w_{t}} \geq \frac{v_{i}}{w_{i}}$ for any $i>t$, the new solution achieves at least the same value for the objective function

$$
\sum_{i=1} \frac{x_{i}^{*}}{w_{i}} \cdot v_{i}
$$

compared to the original solution and therefore must also be optimal.
We now have obtained an optimal solution that agrees with our solution on the first t numbers, i.e., one more than before. By repeating the above argument, we can obtain an optimal solution that agrees with our solution on the first $t+1$ numbers, then another optimal solution agreeing with ours on the first $t+2$ numbers and so on. Eventually, we obtain an optimal solution that is completely the same as our solution. This proves the optimality of our solution.

