
CSCI3160: Regular Exercise Set 3

Prepared by Yufei Tao

Problem 1. Let S be a set of n intervals {[si, fi] | 1 ≤ i ≤ n}, satisfying f1 ≤ f2 ≤ ... ≤ fn. Denote
by S′ the set of intervals in S that are disjoint with [s1, f1]. Prove: if T

′ ⊆ S′ is an optimal solution
to the activity selection problem on S′, then T ′ ∪ {[s1, f1]} is an optimal solution to the activity
selection problem on S.

Solution. We will prove the claim by contradiction. Suppose that T ′ ∪ {[s1, f1]} is not an optimal
solution to the activity selection problem on S. As proved in the class, there exists an optimal
solution T (to the activity selection problem on S) which includes [s1, f1]. It thus follows that
|T ′∪{[s1, f1]}| < |T | (otherwise, T ′∪{[s1, f1]} would be an optimal solution to the activity selection
problem on S).

Since every interval in T \ {[s1, f1]} is disjoint with [s1, f1], all the intervals in T \ {[s1, f1]} must
come from S′. As T ′ is an optimal solution the activity selection problem on S′, we know:

|T ′| ≥ |T \ {[s1, f1]}|
⇒ |T ′ ∪ {[s1, f1]}| ≥ |T |

thus causing a contradiction.

Problem 2. Describe how to implement the activity selection algorithm discussed in the lecture in
O(n log n) time, where n is the number of input intervals.

Solution. Let S be the set of n intervals given, where each interval has the form [s, f]. Sort the
intervals in ascending order the f -value. Denote the sorted order as [s1, f1], [s2, f2], ..., [sn, fn] where
f1 ≤ f2 ≤ ... ≤ fn. Proceed as follows:

1. T = {[s1, f1]}; last = 1
2. for i = 2 to n
3. if si > flast then
4. add [si, fi] into T ; last = i

After sorting, the above algorithm runs in O(n) time.

Problem 3. Prof. Goofy proposes the following greedy algorithm to “solve” the activity selection
problem. Let S be the input set of intervals. Initialize an empty T , and then repeat the following
steps until S is empty:

• (Step 1) Add to T the interval I = [s, f] in S that has the smallest s-value.

• (Step 2) Remove from S all the intervals overlapping with I (including I itself).

Finally, return T as the answer.
Prove: the above algorithm does not guarantee an optimal solution.

Solution. Here is a counterexample: S = {[1, 10], [2, 3], [4, 5]}. Prof. Goofy’s algorithm returns
{[1, 10]}, while the optimal solution is S = {[2, 3], [4, 5]}.

Problem 4**. Prof. Goofy just won’t give up! This time he proposes a more sophisticated greedy
algorithm. Again, let S be the input set of intervals. Initialize an empty T , and then repeat the
following steps until S is empty:

1

• (Step 1) Add to T the interval I ∈ S that overlaps with the fewest other intervals in S.

• (Step 2) Remove from S the interval I as well as all the intervals that overlap with I.

Finally, return T as the answer.
Prove: the above algorithm does not guarantee an optimal solution.

Solution. The following nice counterexample is by courtesy of the site
http://mypathtothe4.blogspot.com/2013/03/greedy-algorithms-activity-selection.html.

S = {[1, 10], [2, 22], [3, 23], [20, 30], [25, 45], [40, 50], [47, 62], [48, 63], [60, 70]}

Prof. Goofy’s algorithm returns 3 intervals (one of them must be [25, 45]), while the optimal
solution consists of 4 intervals.

Problem 5* (Fractional Knapsack). Let (w1, v1), (w2, v2), ..., (wn, vn) be n pairs of positive
real values. Given a real value W ≤

∑n
i=1wi, design an algorithm to find x1, x2, ..., xn to maximize

the objective function ∑
i=1

xi
wi
· vi

subject to

• 0 ≤ xi ≤ wi for every i ∈ [1, n];

•
∑n

i=1 xi ≤W .

Remark: You can imagine that, for each i ∈ [1, n], the value wi is the ‘weight’ of a certain item,
and vi is the item’s ‘value’. The goal is to maximize the total value of the items we collect, subject
to the constraint that all the items must weight no more than W in total. For each item, we are
allowed to take only a fraction of it, which reduces its weight and value by proportion.

Solution. Assume, w.l.o.g., that v1
w1
≥ v2

w2
≥ ... ≥ vn

wn
. Our algorithm runs as follows:

1. for i← 1 to n do
2. xi ← min{W,wi}
3. W ←W − xi

Next, we prove the algorithm returns an optimal solution. Consider an arbitrary optimal solution
x∗1, x

∗
2, ..., x

∗
n. Observe that

∑n
i=1 x

∗
i must be exactly W (think: why?).

Suppose that the optimal solution differs from the solution returned by our algorithm. Let t be
the smallest integer such that xt ̸= x∗t (this means x1 = x∗1, ..., xt−1 = x∗t−1). By how our algorithm
runs, we know xt > x∗t . Define ∆ = xt − x∗t .

2

We argue that x∗t+1 + x∗t+2 + ...+ x∗n ≥ ∆. If this is not true, then

(t−1∑
i=1

x∗i

)
+
(n∑

i=t

x∗i

)
=

(t−1∑
i=1

xi

)
+ (xt −∆) +

(n∑
i=t+1

x∗i

)

<
(t−1∑

i=1

xi

)
+ (xt −∆) +∆

=
(t−1∑

i=1

xi

)
+ xt

≤ W

This means
∑n

i=1 x
∗
i is strictly less than W , giving a contradiction.

We now adjust the optimal solution as follows:

• First, increase x∗t by ∆ to make x∗t = xt.

• Second, reduce a total amount of ∆ arbitrarily from x∗t+1, x
∗
t+2, ..., x

∗
n. This is possible because

x∗t+1 + x∗t+2 + ...+ x∗n ≥ ∆.

Because vt
wt
≥ vi

wi
for any i > t, the new solution achieves at least the same value for the objective

function ∑
i=1

x∗i
wi
· vi.

compared to the original solution and therefore must also be optimal.

We now have obtained an optimal solution that agrees with our solution on the first t numbers,
i.e., one more than before. By repeating the above argument, we can obtain an optimal solution
that agrees with our solution on the first t+ 1 numbers, then another optimal solution agreeing
with ours on the first t+ 2 numbers and so on. Eventually, we obtain an optimal solution that is
completely the same as our solution. This proves the optimality of our solution.

3

