CSCI3160: Regular Exercise Set 2

Prepared by Yufei Tao
Problem 1 (Faster Algorithm for Finding the Number of Crossing Inversions). Let S_{1} and S_{2} be two disjoint sets of n integers. Assume that S_{1} is stored in an array A_{1}, and S_{2} in an array A_{2}. Both A_{1} and A_{2} are sorted in ascending order. Design an algorithm to find the number of such pairs (a, b) satisfying all of the following conditions: (i) $a \in S_{1}$, (ii) $b \in S_{2}$, and (iii) $a>b$. Your algorithm must finish in $O(n)$ time (we gave an $O(n \log n)$-time algorithm in the class).

Problem 2 (Faster Algorithm for Finding the Number of Inversions). Given an array A of n integers, design an algorithm to find the number of inversions in $O(n \log n)$ time.

Problem 3. Give an algorithm of $O(n \log n)$ expected time to solve the dominance counting problem discussed in the class.

Problem 4 (Section 4.1 of the Textbook). Let A be an array of n integers (A is not necessarily sorted). Each integer in A may be positive or negative. Given i, j satisfying $1 \leq i \leq j \leq n$, define sub-array $A[i: j]$ as the sequence $(A[i], A[i+1], \ldots, A[j])$, and the weight of $A[i: j]$ as $A[i]+A[i+1]+\ldots+A[j]$. For example, consider $A=(13,-3,-25,20,-3,-16,-23,18) ; A[1: 4]$ has weight 5 , while $A[2: 4]$ has weight -8 .

1. Give an algorithm to find a sub-array of with the largest weight, among all sub-arrays $A[i: j]$ with $j=n$. Your algorithm must finish in $O(n)$ time.
2. Give an algorithm to find a sub-array with the largest weight in $O(n \log n)$ time (among all the possible sub-arrays).

Problem 5. In the class, we explained how to multiply two $n \times n$ matrices in $O\left(n^{2.81}\right)$ time when n is a power of 2 . Explain how to ensure the running time for any value of n.

