CSCI3160: Regular Exercise Set 2

Prepared by Yufei Tao
Problem 1 (Faster Algorithm for Finding the Number of Crossing Inversions). Let S_{1} and S_{2} be two disjoint sets of n integers. Assume that S_{1} is stored in an array A_{1}, and S_{2} in an array A_{2}. Both A_{1} and A_{2} are sorted in ascending order. Design an algorithm to find the number of such pairs (a, b) satisfying all of the following conditions: (i) $a \in S_{1}$, (ii) $b \in S_{2}$, and (iii) $a>b$. Your algorithm must finish in $O(n)$ time (we gave an $O(n \log n)$-time algorithm in the class).

Solution. Merge A_{1} and A_{2} into one sorted list A, which takes $O(n)$ time. Scan the elements of A in ascending order. In the meantime, maintain the number t of elements that (i) originate from A_{2}, and (ii) have already been scanned so far: this can be done by setting t to 0 in the beginning, and incrementing it each time an element originating from A_{2} is scanned. Furthermore, also maintain a counter c as follows: $c=0$ in the beginning; every time an element originating from A_{1} is seen, increase c by the current value of t. The final c at the end of the algorithm is the number of crossing inversions

Problem 2 (Faster Algorithm for Finding the Number of Inversions). Given an array A of n integers, design an algorithm to find the number of inversions in $O(n \log n)$ time.

Solution. We will solve a more challenging problem: besides reporting the number of inversions, the algorithm also needs to sort A in ascending order. Break A at the middle into two arrays A_{1} and A_{2} each with at most $\lceil n / 2\rceil$ elements. Recursively, find the number c_{1} of inversions in A_{1} and the number c_{2} of inversions in A_{2}. At this moment, both A_{1} and A_{2} have been sorted. We can then apply the algorithm in Problem 1 to find the number of crossing inversions in $O(n)$ time. Finally, merge A_{1} and A_{2} into a sorted array using $O(n)$ time. It is rudimentary to verify that the running time is $O(n \log n)$.

Problem 3. Give an algorithm of $O(n \log n)$ expected time to solve the dominance counting problem discussed in the class.

Solution. We will solve a more challenging problem: besides reporting the dominance counts, the algorithm should also sort P in ascending order.

As discussed in the class, our original algorithm divides P into two halves P_{1} and P_{2} using a vertical line ℓ, and then recurse on P_{1} and P_{2} respectively. Upon returning from the recursion, the points of P_{1} and P_{2} have been sorted by y-coordinate. We still need to find, for each point $p_{2} \in P_{2}$, the number of points $p_{1} \in P_{1}$ that are dominated by p_{2}. Next we show that this can be done in $O(n)$ time. Merge P_{1} and P_{2} into one sorted list P, where the points are sorted in ascending order by y-coordinate. Scan P. In the meantime, maintain the number t of points that (i) originate from P_{1}, and (ii) have already been scanned so far. Every time a point p_{2} originating from P_{2} is seen, the number of points $p_{1} \in P_{1}$ dominated by p_{2} is precisely the current value of t. To complete the algorithm, return the sorted list of P. The overall time complexity now becomes $O(n \log n)$.

Problem 4 (Section 4.1 of the Textbook). Let A be an array of n integers (A is not necessarily sorted). Each integer in A may be positive or negative. Given i, j satisfying $1 \leq i \leq j \leq n$, define sub-array $A[i: j]$ as the sequence $(A[i], A[i+1], \ldots, A[j])$, and the weight of $A[i: j]$ as
$A[i]+A[i+1]+\ldots+A[j]$. For example, consider $A=(13,-3,-25,20,-3,-16,-23,18) ; A[1: 4]$ has weight 5 , while $A[2: 4]$ has weight -8 .

1. Give an algorithm to find a sub-array of with the largest weight, among all sub-arrays $A[i: j]$ with $j=n$. Your algorithm must finish in $O(n)$ time.
2. Give an algorithm to find a sub-array with the largest weight in $O(n \log n)$ time (among all the possible sub-arrays).

Solution. Subproblem 1: Scan the elements of A from $A[n]$ to $A[1]$. At any time, maintain the sum s of the elements already scanned: at the beginning $s=0$; after scanning an element $A[i]$, add $A[i]$ to s. Every time we finish doing so for element $A[i]$, the current value s is precisely the weight of $A[i: n]$. In this way, we obtain the weights of all sub-arrays $A[n: n], A[n-1: n], \ldots, A[1: n]$ (in this order) in $O(n)$ time. The maximum weight can then be found easily.

Subproblem 2: Break A into two halves: array A_{1} which contains the first $\lceil n / 2\rceil$ elements, and array A_{2} which contains the rest. Recursively, find the sub-array of A_{1} with the largest weight, and then the sub-array of A_{2} with the largest weight. It remains to consider the "crossing" sub-arrays $A[i: j]$ where $i \leq\lceil n / 2\rceil$ and $j>\lceil n / 2\rceil$. In particular, we want to find the "best" crossing sub-array, i.e., the one with the maximum weight. Then, the sub-array to output can be decided easily from the three sub-arrays aforementioned.

We say that a sub-array $A_{1}[i: j]$ is right grounded if $j=\lceil n / 2\rceil$, and a sub-array $A_{2}[i: j]$ is left grounded if $i=1$. A crucial observation is that the "best" crossing sub-array must be the concatenation of

- the right grounded sub-array in A_{1} with the maximum weight, and
- the left grounded sub-array in A_{2} with the maximum weight.

From Subproblem 1, we know that each of the above two grounded sub-arrays can be found in $O(n)$ time.

Therefore, if $f(n)$ is the time of solving the problem on an array of length n, it holds that $f(n) \leq 2 \cdot f(\lceil n / 2\rceil)+O(n)$, which gives $f(n)=O(n \log n)$.

Problem 5. In the class, we explained how to multiply two $n \times n$ matrices in $O\left(n^{2.81}\right)$ time when n is a power of 2 . Explain how to ensure the running time for any value of n.

Solution. If n is not a power of 2 , let m be the smallest power of 2 that is larger than n. If A, B are the $n \times n$ input matrices, obtain an $m \times m$ matrix A^{\prime} by padding $m-n$ dummy rows and columns to A containing only 0 values, and similarly, an $m \times m$ matrix B^{\prime} from B. Calculate $A^{\prime} B^{\prime}$ in $O\left(m^{2.81}\right)=O\left((2 n)^{2.81}\right)=O\left(n^{2.81}\right)$ time. Then, the matrix $A B$ can be obtained by discarding the last $m-n$ rows and columns from the matrix $A^{\prime} B^{\prime}$.

