
CSCI3160: Regular Exercise Set 13

Prepared by Yufei Tao

Problem 1 (Reduction from Hitting Set to Set Cover). Given an instance to the hitting set
problem, explain how to convert it to a set cover problem.

Solution. In the hitting set problem, we are given a collection of sets S, where each set S ∈ S is a
subset of some universe U . We want to find a hitting set H ⊆ U of the smallest size (recall that H
is an hitting set if H ∩ S ̸= ∅ for every S ∈ S).

Define a bipartite graph G where

• every left vertex of G corresponds to a set S ∈ S;

• every right vertex of G corresponds to an element e ∈ U ;

• G has an edge between a set vertex S and an element vertex e if and only if e ∈ S.

Solving the original hitting set problem is equivalent to finding a smallest set R of right vertices
such that every left vertex is adjacent to at least one vertex in R.

For each e ∈ U , define Ne as the set of neighbors of the element vertex e (i.e., a right vertex).
Note that a set vertex S (i.e., a left vertex) is in Ne if and only if e ∈ S. The set collection
{Ne | e ∈ U} defines a set cover problem, whose universe is the set of left vertices and has a size of
|S|. Let C be an optimal set cover of this problem. Then H = {e ∈ U | Ne ∈ C} must be an optimal
hitting set for the original problem.

Problem 2 (Reduction from Set Cover to Hitting Set). Given an instance to the set cover
problem, explain how to convert it to a hitting set problem.

Solution. In the set cover problem, we are given a collection S of sets and a universe U =
⋃

S∈S S.
We want to find a set cover C ⊆ S of the smallest size (recall that C is a set cover if

⋃
S∈C S = U).

Define a bipartite graph G where

• every left vertex of G corresponds to a set S ∈ S;

• every right vertex of G corresponds to an element e ∈ U ;

• G has an edge between a set vertex S and an element vertex e if and only if e ∈ S.

Solving the original set cover problem is equivalent to finding a smallest set L of left vertices such
that every right vertex is adjacent to at least one vertex in L.

For each e ∈ U , define Ne as the set of neighbors of the element vertex e (i.e., a right vertex).
Note that a set vertex S (i.e., a left vertex) is in Ne if and only if e ∈ S. The set collection
{Ne | e ∈ U} defines a hitting set problem. Find an optimal hitting set H of this problem (note
that H is a set of set vertices). Then, the collection {S ∈ S | the vertex of S is in H} must be an
optimal set cover for the original problem.

Problem 3. In the hitting set problem, we are given a collection of sets S, where each set S ∈ S is
a subset of some universe U . We want to find a hitting set H ⊆ U of the smallest size (recall that
H is an hitting set if H ∩ S ̸= ∅ for every S ∈ S). Let OPT be the size of an optimal hitting set.
Design a polynomial time algorithm that returns a hitting set of size at most OPT · (1 + ln |S|).

1

Solution. Use the solution to Problem 1 to convert this problem to a set cover problem whose
universe has size |S|. Run our greedy set-cover algorithm to obtain a set cover of size OPT ·(1+ln |S|).
Then, return H = {e ∈ U | Ne ∈ C} the original problem.

Problem 4. Let G = (V,E) be an undirected simple graph where each edge e ∈ E is associated
with a non-negative weight w(e). For any vertices u, v ∈ V , define spdist(u, v) as the shortest path
distance between u and v. Given a subset C ⊆ V , define its cost as

cost(C) = max
u∈V

min
c∈C

spdist(c, u).

Fix an integer k ∈ [1, |V |]. Let OPT be the smallest cost of all subsets C ⊆ V with |C| = k. Design
an algorithm to find a size-k subset with cost at most 2 ·OPT. Your algorithm must run in time
polynomial to |V |.

Solution. First, calculate the shortest path distances between all pairs of vertices in V . This can
be done in polynomial time by resorting to Dijkstra’s algorithm. Then, run the k-center algorithm
discussed the class on V . Specifically, initialize an empty set C and add to C an arbitrary vertex.
Then, repeat the following step until |C| = k: add to C the vertex u maximizing minc∈C spdist(c, u).

The proof regarding the approximation ratio 2 remains valid as long as the distance function
satisfies the triangle inequality. It is clear that shortest path distances satisfy the triangle inequality.

Problem 5. Consider the k-center problem on a set P of n 2D points. Our lecture made the
assumption that the Euclidean distance of any two points can be computed precisely in polynomial
time. This is not a realistic assumption (because the computation requires calculating square roots).
Modify our 2-approximate algorithm to make it run in polynomial time without the assumption.

Solution. You do not need to compute Euclidean distances! All we need is to compare two Euclidean
distances to see which one is larger. More specifically, given four points a, b, c, and d, it suffices
to compare dist(a, b) and dist(c, d), where dist(., .) represents the Euclidean distance between two
points. Let a[x] and a[y] be the x- and y-coordinates of a, respectively (and adopt similar notations
for b, c, and d). It suffices to compare (a[x]− b[x])2 + (a[y]− b[y])2 to (c[x]− d[x])2 + (c[y]− d[y])2.
It is clear that such comparison can be done in O(1) time.

It should now be straightforward to modify the algorithm to run in polynomial time without
the assumption.

Problem 6**. Let P be a set of n 2D points. Given a subset C ⊆ P , define:

• (for each point p ∈ P) distC(p) = minc∈C dist(c, p), where dist(c, p) represents the Euclidean
distance between c and p;

• cost(C) = maxp∈P distC(p).

Fix a real value r > 0. Call a subset C ⊆ P an r-feasible subset if cost(C) ≤ r. Prove: unless P
= NP, there does not exist an algorithm that can find an r-feasible subset with the smallest size
in time polynomial to n. You can assume that the Euclidean distance of any two points can be
computed in polynomial time.

(Hint: Show that the existence of such an algorithm implies a polynomial time algorithm for the
k-center problem.)

Solution. Let us refer to the above problem as the r-radius problem. Suppose that we are given an
algorithm A that can solve the problem in polynomial time for any r. Next, we will show how to
solve the k-center problem discussed in the class in polynomial time.

2

First, compute the distance between each pair of points in P . This produces a set R of
(
n
2

)
distances. Sort these distances in ascending order, and denote the i-th smallest distance as ri
for i ∈ [1,

(
n
2

)
]. For each i, use algorithm A to solve the ri-radius problem and obtain its output

C∗
i . The sizes of |C∗

1 |, |C∗
2 |, ..., |C∗

(n2)
| must be in non-ascending order. Identify the smallest j with

|C∗
j | ≤ k and return C∗

j as the solution to the k-center problem. If A runs in polynomial time, then
the whole algorithm runs in polynomial time.

Next, we will prove that the above algorithm correctly solves the k-center problem. Let C∗

be an optimal solution to the k-center problem. We will prove cost(C∗
j) = cost(C∗) (recall that

cost(C∗
j) = rj). Suppose that cost(C∗

j) > cost(C∗). It is important to note that cost(C∗) equals

the distance of two points in P and, hence, cost(C∗) = rt for some t ∈ [1,
(
n
2

)
]. Hence, the condition

cost(C∗
j) > cost(C∗) tells us rj > rt. As the distances in R are sorted in ascending order, we must

have j > t. By how j is chosen, we know that |C∗
t | > k = |C∗|.

However, as C∗ is an rt-feasible subset, it is a better solution to the rt-radius problem than
C∗
t (due to the fact |C∗| < |C∗

t |). This contradicts the fact that C∗
t is an optimal solution to the

rt-radius problem.

3

