
CSCI3160: Regular Exercise Set 12

Prepared by Yufei Tao

Problem 1 (Reduction from Vertex Cover to Set Cover). Prove: If the set cover problem
admits a polynomial time algorithm (for finding an optimal solution), then the vertex cover algorithm
admits a polynomial time algorithm (for finding an optimal solution).

Solution. Let G = (V,E) be the input graph to the vertex cover problem. We will create an
instance of the set cover problem such that if we can solve that instance optimally, we can derive an
optimal solution for the vertex cover problem on G efficiently.

For each vertex u ∈ V , create a set Su that includes all the edges of E incident on u. We will
call u the owner of Su. Now, define a collection of sets:

S = {Su | u ∈ V }.

The universe U equals
⋃

u∈V Su = E. For any sub-collection C ⊆ S, define

V (C) = {u ∈ V | Su ∈ C}

namely, V (C) includes all the owners of the sets in C.

Claim 1: C ⊆ S is a set cover of U (namely,
⋃

S∈C S = U) if and only if V (C) is a vertex
cover of G (namely, every edge of G has at least a vertex in V (C)).

Proof of Claim 1: First, assuming that C ⊆ S is a set cover of U , we will prove that V (C) is
a vertex cover of G. For this purpose, we must prove that any edge e = {u, v} of G must have at
least one vertex in V (C). As e is a member of U , it must be covered by

⋃
S∈C S (as C is a set cover),

which means e must appear in at least one set S ∈ C. Note that the owner of S must be either u or
v (by the way we construct the sets in S). W.l.o.g., suppose that u is the owner of S, which implies
u ∈ V (C). Therefore, V (C) is a vertex cover of G.

Second, assuming that V (C) is a vertex cover of G, we will prove that C is a set cover of U . For
this purpose, we must prove that any edge e = {u, v} of G must be covered by

⋃
S∈C S. As V (C)

is a vertex cover, it must contain either u or v. W.l.o.g., suppose that u ∈ V (C). By definition of
V (C), u must be the owner of a set in C (the set is Su). It thus follows that e ∈ Su ⊆

⋃
S∈C S.

Claim 2: For any subset U ⊆ V , there is a sub-collection C ⊆ S satisfying V (C) = U .

Proof of Claim 2: Such a C can be explicitly constructed as C = {Su | u ∈ U}.
Therefore, to solve the vertex cover optimally, we can first find an optimal set cover C and then

return V (C). Hence, if C can be found in polynomial time, we obtain a polynomial time algorithm
for the vertex cover problem.

Remark. This means that if the vertex cover cannot be solved in polynomial time, neither can set
cover.

Problem 2. Let C∗ be an optimal universe cover for the set cover problem. Consider running
the set cover algorithm discussed in the lecture. In particular, consider the moment right before
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the algorithm is to choose the i-th set Si, having chosen already S1, S2, ..., Si−1. Let zi−1 be
the number of elements in the universe that have not been covered by S1 ∪ S2 ∪ ... ∪ Si−1. Let
C = {S1, S2, ..., Si−1} ∩ C∗, i.e., C includes all the sets of C∗ that “happened” to have been selected
by our algorithm so far. Prove:

• C ̸= C∗.

• Si has benefit at least zi−1/(|C∗| − |C|).

Solution.
(i) If C = C∗, then the sets picked by our algorithm have already covered the entire universe. In

that case, the algorithm would not have needed to pick Si.

(ii) Let C∗
out = C∗ \ C; note that |C∗

out | = |C∗| − |C|. The zi−1 elements not yet covered by
{S1, S2, ..., Si−1} must be covered by C∗

out . Therefore, one of the sets in C∗
out must have a benefit at

least zi−1/|C∗
out | = zi−1/(|C∗| − |C|). The claim thus follows from the algorithm’s greedy nature.

Problem 3. Let I be a set of n intervals in 1D space (i.e., each interval has the form [x, y]) and
P be a set of n 1D points. A subset S ⊆ P is a stabbing set of I if every interval of I covers at
least one point in S. Let OPT be the size of the smallest stabbing set of I, and you are guaranteed
that OPT ≥ 1. Design an algorithm to find a stabbing set of size at most OPT · O(log n). Your
algorithm must run in time polynomial to n.

Solution. We will convert the problem into an instance of set cover. For each point p ∈ P , define
Ip to be the set of intervals I ∈ I that contain p. The set collection {Ip | p ∈ P} defines a set cover
problem with U =

⋃
p∈P Ip. A subset S ⊆ P is a stabbing set of I if and only if {Ip | p ∈ S} is a set

cover of U . By running our greedy set-cover algorithm, we can obtain a set cover C of U with size
OPT ·O(log n). We can then return {p ∈ P | Ip ∈ C} as a stabbing set for the original problem.

Problem 4*. Let I be a set of n intervals in 1D space (i.e., each interval has the form [x, y]). A
set S of 1D points is a stabbing set of I if every interval of I covers at least one point in S. Let
OPT be the size of the smallest stabbing set of I. Design an algorithm to find a stabbing set of size
at most OPT ·O(log n). Your algorithm must run in time polynomial to n.

Remark. The problem is similar to Problem 3 except that we can form a stabbing set with arbitrary
1D points, rather than using only points from a given set P .

Solution. Let P be the set of 2n endpoints of the intervals in I. Convince yourself that it suffices
to form stabbing sets from the points in P . Now, we can apply the solution to Problem 3.
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