CSCI3160: Regular Exercise Set 10

Prepared by Yufei Tao

Problem 1. Consider a complete bipartite graph G = (V, E):

- V has 2n vertices, including n black vertices and n white vertices.
- E has n^2 edges, including an edge between every black vertex and every white vertex.

Use G to explain why 2 is the best the approximation ratio that we can prove for the vertex cover algorithm discussed in our lecture.

Problem 2*. Let G = (V, E) be an input graph to the vertex cover problem. If G is a tree, describe an O(|V|)-time algorithm that finds an optimal vertex cover of G.

(Hint: Dynamic programming.)

Problem 3.** Prof. Goofy proposes the following algorithm to find a vertex cover of G = (V, E):

algorithm max-deg-VC Input: G = (V, E)1. $S = \emptyset$ 2. while E not empty do

- 3. $v \leftarrow a$ vertex with the maximum degree in the current G
- 4. add v to S
- 5. remove from E all the edges of v

Show that the approximation ratio of this algorithm is greater than 2.

Problem* 4 (Max-Cut). Let G = (V, E) be a simple undirected graph. Given a subset $S \subseteq V$, a *cut* induced by S is the set of edges $e \in E$ such that e has a vertex in S and another vertex in $V \setminus S$. Let OPT_G be the maximum size of a cut that can be induced by any $S \subseteq V$. Design a poly(|V|)-time (i.e., polynomial time in |V|) algorithm that returns a cut of size at least $OPT_G/2$ in expectation.

(Hint: Random assignment.)