
CSCI3160: Regular Exercise Set 10

Prepared by Yufei Tao

Problem 1. Consider a complete bipartite graph G = (V,E):

• V has 2n vertices, including n black vertices and n white vertices.

• E has n2 edges, including an edge between every black vertex and every white vertex.

Use G to explain why 2 is the best the approximation ratio that we can prove for the vertex cover
algorithm discussed in our lecture.

Solution. It is easy to verify that our vertex cover algorithm picks all the 2n vertices. An optimal
solution, however, should include only n vertices (e.g., all the black ones).

Problem 2*. Let G = (V,E) be an input graph to the vertex cover problem. If G is a tree, describe
an O(|V |)-time algorithm that finds an optimal vertex cover of G.

(Hint: Dynamic programming.)

Solution. Root the tree G at an arbitrary node. For each node u of the tree, define T (u) the
subtree rooted at u. In addition, define

• OPT(u, yes) as the size of an optimal vertex cover of T (u), provided that u belongs to the
vertex cover.

• OPT(u,no) as the size of an optimal vertex cover of T (u), provided that u does not belong to
the vertex cover.

If u is a leaf, then

OPT(u, yes) = 1

OPT(u,no) = 0.

If u is an internal node, then

OPT(u, yes) = 1 +
∑

child v of u

min{OPT(v, yes),OPT(v,no)}

OPT(u,no) =
∑

child v of u

OPT(v, yes)

Let r be the root of G. It is now rudimentary to compute OPT(r, yes) and OPT(r,no) in
O(|V |) time (go through the nodes in a bottom-up order). The optimal vertex cover size is
min{OPT(r, yes),OPT(r,no)}. To obtain an optimal vertex, apply the piggyback technique.

Problem 3**. Prof. Goofy proposes the following algorithm to find a vertex cover of G = (V,E):

algorithm max-deg-VC
Input: G = (V,E)

1. S = ∅
2. while E not empty do
3. v ← a vertex with the maximum degree in the current G
4. add v to S
5. remove from E all the edges of v

1

Show that the approximation ratio of this algorithm is greater than 2.

Solution. Let us construct a bipartite graph G as follows. The set L of left vertices is {u1, u2, ..., u16}.
To generate the right vertices, for each i ∈ [2, 16], we create a group Ri which contains si = ⌊16/i⌋
vertices, denoted as Ri[1], Ri[2], ..., and Ri[si], respectively. The set R of right vertices is the union
of R2, R3, ..., R16. The size of R is

∑16
i=2 si = 34.

Generate the edges of G as follows: for each group i ∈ [2, 16], connect Ri[j] (j ∈ [1, si]) to the i
vertices ui(j−1)+1, ui(j−1)+2, ..., uij .

Running Prof. Goofy’s algorithm, you will see that it picks all the 34 right vertices. As an
optimal solution, we can pick the 16 left vertices.

Problem* 4 (Max-Cut). Let G = (V,E) be a simple undirected graph. Given a subset S ⊆ V ,
a cut induced by S is the set of edges e ∈ E such that e has a vertex in S and another vertex in
V \ S. Let OPTG be the maximum size of a cut that can be induced by any S ⊆ V . Design a
poly(|V |)-time (i.e., polynomial time in |V |) algorithm that returns a cut of size at least OPTG/2
in expectation.

(Hint: Random assignment.)

Solution. Start with an empty S. For each vertex u ∈ S, toss a fair coin. If the coin comes up heads,
add u to S; otherwise, leave u out of S. It is easy to prove that each edge {u, v} ∈ E contributes to
the cut induced by S with probability 1/2. Hence, the cut has size |E|/2 in expectation, which is at
least OPTG/2 by the trivial fact |E| ≥ OPTG.

2

