CSCI3160: Regular Exercise Set 1

Prepared by Yufei Tao
Problem 1. Recall that our RAM model has an atomic operation $\operatorname{RANDOM}(x, y)$ which, given integers x, y, returns an integer chosen uniformly at random from $[x, y]$. Suppose that you are allowed to call the operation only with $x=1$ and $y=128$. Describe an algorithm to obtain a uniformly random number between 1 and 100. Your algorithm must finish in $O(1)$ expected time.

Problem 2*. Suppose that we enforce an even harder constraint that you are allowed to call $\operatorname{RANDOM}(x, y)$ only with $x=0$ and $y=1$. Describe an algorithm to generate a uniformly random number in $[1, n]$ for an arbitrary integer n. Your algorithm must finish in $O(\log n)$ expected time.

Problem 3. Consider the following algorithm to find the greatest common divisor of n and m where $n \leq m$:

```
algorithm GCD(n,m)
    if }n=0\mathrm{ then
        return m
    m=m-n
    if n\leqm then return GCD(n,m)
    else return GCD(m,n)
```

Prove:

1. The time complexity of the algorithm is $O(m)$.
2. The time complexity of the algorithm is $\Omega(m)$.

Problem 4. Consider an input array A that has $n=120$ elements. Suppose that we choose a number v in A uniformly at random. What is the probability that the rank of v (among all the numbers in A) fall in the range $[35,78]$?

Problem 5** (A Simpler Randomized Algorithm for k-Selection, but with a More Tedious Analysis). In the k-selection problem, we have an array S of n distinct integers (not necessarily sorted). We would like to find the k-th smallest integer in S where $k \in[1, n]$. Here is another way of solving it using randomization. If $n=1$, then we simply return the only element in S. For $n>1$, we proceed as follows:

- Randomly pick an integer v in S, and obtain the rank r of v in S.
- If $r=k$, return v.
- If $r>k$, produce an array S^{\prime} containing the integers of S that are smaller than v. Recurse by finding the k-th smallest in S^{\prime}.
- Otherwise, produce an array S^{\prime} containing the integers of S that are larger than v. Recurse by finding the $(r-k)$-th smallest in S^{\prime}.

Prove that the above algorithm finishes in $O(n)$ expected time.

