CSCI3160: Regular Exercise Set 1

Prepared by Yufei Tao
Problem 1. Recall that our RAM model has an atomic operation $\operatorname{RANDOM}(x, y)$ which, given integers x, y, returns an integer chosen uniformly at random from $[x, y]$. Suppose that you are allowed to call the operation only with $x=1$ and $y=128$. Describe an algorithm to obtain a uniformly random number between 1 and 100. Your algorithm must finish in $O(1)$ expected time.

Solution. Call RANDOM $(1,128)$ and let z be its return value. Output z if it is in $[1,100]$. Otherwise, repeat from the beginning. We need to call the operator twice in expectation because each time z has probability $100 / 128$ to fall in the range we want.

Problem 2*. Suppose that we enforce an even harder constraint that you are allowed to call $\operatorname{RANDOM}(x, y)$ only with $x=0$ and $y=1$. Describe an algorithm to generate a uniformly random number in $[1, n]$ for an arbitrary integer n. Your algorithm must finish in $O(\log n)$ expected time.

Solution. We first obtain the smallest power of 2 that is at least n. For this purpose, set $x=1$, and double x each time until $x \geq n$. The final x is the power of 2 we are looking for. This takes $O(\log n)$ time.

Next we will generate a uniformly random number y in $[1, x]$. For this purpose, call $\operatorname{RANDOM}(0,1)$, and let z be its return. If $z=0$, we proceed to generate a random number in $[1, x / 2]$ recursively; otherwise, proceed in $[(x / 2)+1, x]$ recursively. Note that the range of numbers has shrunk by half. The recursion goes on $O(\log n)$ steps before the range contains only one number, which is the y we want.

Return y if $y \leq n$. Otherwise, repeat by generating another y. Since $y \geq x / 2$, at most 2 repeats are needed in expectation. The overall time is therefore $O(\log n)$ in expectation.

Problem 3. Consider the following algorithm to find the greatest common divisor of n and m where $n \leq m$:

```
algorithm \(G C D(n, m)\)
    if \(n=0\) then
        return \(m\)
    \(m=m-n\)
    if \(n \leq m\) then return \(G C D(n, m)\)
    else return \(G C D(m, n)\)
```

Prove:

1. The time complexity of the algorithm is $O(m)$.
2. The time complexity of the algorithm is $\Omega(m)$.

Solution.

Proof of Statement 1: Each time a recursive call to the algorithm is made, $\max \{n, m\}$ decreases by at least 1. Therefore, there can be at most m calls overall. Each call clearly takes $O(1)$ time.
Proof of Statement 2: Fix $n=1$. It is clear that the algorithm must make m calls.

Problem 4. Consider an input array A that has $n=120$ distinct elements. Suppose that we choose a number v in A uniformly at random. What is the probability that the rank of v (among all the numbers in A) fall in the range $[35,78]$?

Solution. $(78-35+1) / 120=44 / 120$.
Problem 5** (A Simpler Randomized Algorithm for k-Selection, but with a More Tedious Analysis). In the k-selection problem, we have an array S of n distinct integers (not necessarily sorted). We would like to find the k-th smallest integer in S where $k \in[1, n]$. Here is another way of solving it using randomization. If $n=1$, then we simply return the only element in S. For $n>1$, we proceed as follows:

- Randomly pick an integer v in S, and obtain the rank r of v in S.
- If $r=k$, return v.
- If $r>k$, produce an array S^{\prime} containing the integers of S that are smaller than v. Recurse by finding the k-th smallest in S^{\prime}.
- Otherwise, produce an array S^{\prime} containing the integers of S that are larger than v. Recurse by finding the $(r-k)$-th smallest in S^{\prime}.

Prove that the above algorithm finishes in $O(n)$ expected time.
Solution. Let $f(n)$ be the expected time of the above algorithm on an input of size n. Clearly, $f(0)=O(1)$ and $f(1)=O(1)$.

Consider $n>1$. The rank r of v is uniformly distributed in $[1, n]$, namely, for each $i \in[1, n]$, $\operatorname{Pr}[r=i]=1 / n$. When $r=i$, it determines a "left subset" containing the $i-1$ integers of S smaller than v, and a "right subset" of size $n-i$. In the worst case, we recurse into the larger of the two subsets, namely, we would need to solve the problem on an array of size $\max \{i-1, n-i\}$. This gives rise to the following recurrence (for some constant $\alpha>0$):

$$
\begin{aligned}
f(n) & \leq \alpha \cdot n+\frac{1}{n} \sum_{i=1}^{n} f(\max \{i-1, n-i\}) \\
& \leq \alpha \cdot n+\frac{2}{n} \sum_{i=\lceil n / 2\rceil}^{n} f(i-1)
\end{aligned}
$$

We will prove that the recurrence leads to $f(n) \leq c n$ for some constant $c>0$. First, this is obviously true for $n \leq 24$ when c is at least a certain constant, say β (when $n=O(1)$, the algorithm definitely finishes in constant time).

Suppose that $f(n) \leq c n$ for $n \leq k-1$ where $k \geq 24$. Set $t=\lceil k / 2\rceil$. We have:

$$
\begin{aligned}
f(k) & \leq \alpha \cdot k+\frac{2}{k} \sum_{i=t}^{k} c(i-1)=\alpha \cdot k+\frac{2 c}{k} \sum_{i=t-1}^{k-1} i \\
& =\alpha \cdot k+\frac{2 c}{k} \frac{(k+t-2)(k-t+1)}{2}<\alpha \cdot k+\frac{c\left(k^{2}+3 t-t^{2}\right)}{k} \\
& <(\alpha+c) k+3 c-c \frac{t^{2}}{k} \leq(\alpha+c) k+3 c-c \frac{(k / 2)^{2}}{k} \\
& =(\alpha+c) k+3 c-c k / 4
\end{aligned}
$$

We need the above to be at most $c k$, namely:

$$
\begin{gathered}
(\alpha+c) k+3 c-c k / 4 \leq c k \\
\Leftrightarrow \alpha k+3 c \quad \leq c k / 4 \\
\Leftarrow\left\{\begin{array}{l}
c k / 4 \geq 2 \alpha k \\
c k / 4 \geq 6 c .
\end{array}\right. \\
\Leftarrow\left\{\begin{array}{l}
c \geq 8 \alpha \\
k \geq 24 .
\end{array}\right.
\end{gathered}
$$

Hence, setting $c=\max \{\beta, 8 \alpha\}$ completes the proof.

