Problem 1
 • Faster Algorithm for Finding the Number of Crossing Inversions.

Problem 2
 • Give an $O(n \log n)$-time algorithm to solve the dominance counting problem discussed in the class.
Counting inversions

Problem: Given an array A of n distinct integers, count the number of inversions.

An inversion is a pair of (i, j) such that

- $1 \leq i < j \leq n$.

Example: Consider $A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)$. Then $(1, 2)$ is an inversion because $A[1] = 10 > A[2] = 3$. So are $(1, 3), (3, 4), (4, 5)$, and so on. There are in total 31 inversions.
Counting inversions

Let: \(A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6) \)

- \(A_1 = (2, 3, 8, 9, 10), A_2 = (1, 4, 5, 6, 7). \)
- The counts of inversions in \(A_1 \) and \(A_2 \) are known by solving the “counting inversion” problem recursively on \(A_1 \) and \(A_2 \).

We need to count the number of crossing inversion \((i, j)\) where \(i \) is in \(A_1 \) and \(j \) in \(A_2 \).

Binary search

- Conducting \(n/2 \) binary searches (\(O(n\log n) \)).
- Let \(f(n) \) be the worst-case running time of the algorithm on \(n \) numbers.
 - \(f(n) \leq 2f([n/2]) + O(n\log n) \)
 - which solves to \(f(n) = O(n\log^2 n) \).
Problem 1: Faster Algorithm for Finding the Number of Crossing Inversions.

Let S_1 and S_2 be two disjoint sets of n integers. Assume that S_1 is stored in an array A_1, and S_2 in an array A_2. Both A_1 and A_2 are sorted in ascending order. Design an algorithm to find the number of such pairs (a, b) satisfying all of the following conditions:

- $a \in S_1$,
- $b \in S_2$,
- $a > b$.

Your algorithm must finish in $O(n)$ time.
Counting inversions

- **Method**
 - Merge A_1 and A_2 into one sorted list A.
 - Let: $A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)$
 - $A_1 = (2, 3, 8, 9, 10)$, $A_2 = (1, 4, 5, 6, 7)$

 A_1
 \[\begin{array}{cccccc}
 2 & 3 & 8 & 9 & 10
 \end{array} \]

 A_2
 \[\begin{array}{cccccc}
 1 & 4 & 5 & 6 & 7
 \end{array} \]

- We will merge them together and in the meantime maintain the count of crossing inversions.
Counting inversions

Ordered list produced: Nothing yet
The count of crossing inversions : 0
Counting inversions

Ordered list produced: 1
The count of crossing inversions: 0
Counting inversions

Ordering produced: 1, 2

The count of crossing inversions: $0 + 1 = 1$.
Counting inversions

- Ordering produced: 1, 2, 3
- The count of crossing inversions: $1 + 1 = 2$.
Counting inversions

Ordering produced: 1, 2, 3, 4

The count of crossing inversions: 2
Counting inversions

Ordering produced: 1, 2, 3, 4, 5
The count of crossing inversions: 2

Last count
Counting inversions

- Ordering produced: 1, 2, 3, 4, 5, 6
- The count of crossing inversions: 2.
Counting inversions

- Ordering produced: 1, 2, 3, 4, 5, 6, 7
- The count of crossing inversions: 2
Counting inversions

Ordering produced: 1, 2, 3, 4, 5, 6, 7, 8

The count of crossing inversions: $2 + 5 = 7$.
Counting inversions

Ordering produced: 1, 2, 3, 4, 5, 6, 7, 8, 9

The count of crossing inversions: $7 + 5 = 12$.
Counting inversions

Ordering produced: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

The count of crossing inversions: $12 + 5 = 17$.
Counting inversions

Analysis

- Let $f(n)$ be the worst-case running time of the algorithm on n numbers.

Then

- $f(n) \leq 2f([n/2]) + O(n)$,
- which solves to $f(n) = O(n\log n)$.
Dominance counting

Problem 2

- Give an $O(n\log n)$-time algorithm to solve the dominance counting problem discussed in the class.

Point dominance definition

- Denote by \mathbb{N} the set of integers. Given a point p in two-dimensional space \mathbb{N}^2, denote by $p[1]$ and $p[2]$ its x- and y-coordinates, respectively.

Dominance counting

Let P be a set of n points in \mathbb{N}^2. Find, for each point $p \in P$, the number of points in P that are dominated by p.

Example:

We should output: $(p_1, 0), (p_2, 1), (p_3, 0), (p_4, 2), (p_5, 2), (p_6, 5), (p_7, 2), (p_8, 0)$.
Dominance counting

- Divide: Find a vertical line l such that P has $\lceil n/2 \rceil$ points on each side of the line. (k-selection, $O(n)$ time).
Dominance counting

- **Divide:**
 - $P_1 =$ the set of points of P on the left of l.
 - $P_2 =$ the set of points of P on the right of l.

Example:

$P_1 = \{p_1, p_2, p_3, p_4\}$

$P_2 = \{p_5, p_6, p_7, p_8\}$.
Dominance counting

- Divide:
 - Solve the dominance counting problem on P_1 and P_2 separately.

Example:

On P_1, we have obtained: $(p_1, 0), (p_2, 1), (p_3, 0), (p_4, 2)$.

On P_2, we have obtained: $(p_5, 0), (p_6, 1), (p_7, 0), (p_8, 0)$.
Dominance counting

- Divide:
 - Remains to obtain, for each point $p \in P_2$, how many points in P_1 it dominates.

Example:

On P_1, we have obtained: $(p_1, 0), (p_2, 1), (p_3, 0), (p_4, 2)$.

On P_2, we have obtained: $(p_5, 0), (p_6, 1), (p_7, 0), (p_8, 0)$.
Dominance counting

- Sort P_1 by y-coordinate
 - Then, for each point $p \in P_2$, we can obtain the number of points in P_1 dominated by p using binary search.

Example:

- P_1 in ascending order of y-coordinate: p_3, p_1, p_4, p_2.

- How to perform binary search to obtain the fact that p_5 dominates 2 points in P_1?
 - Search using the y-coordinate of p_5.
Dominance counting: a faster algorithm

- Scan the point from P_1 by y-coordinate in ascending order, and conduct the same operation from P_2 synchronously.

 - Then, for each point $p \in P_2$, we can obtain the number of points in P_1 dominated by p using merging the following two sorted arrays, based on y-coordinates.

 - $P_1 = (p_3, p_1, p_4, p_2)$
 - $P_2 = (p_8, p_7, p_5, p_6)$
Dominance counting

- Scan the points from P_1 by y-coordinate in ascending order. Do the same on P_2.

 - $P_1 = (p_3, p_1, p_4, p_2)$
 - $P_2 = (p_8, p_7, p_5, p_6)$

Only care about y-coordinates
Dominance counting

- \(P_1 = (p_3, p_1, p_4, p_2) \)
- \(P_2 = (p_8, p_7, p_5, p_6) \)
- \(\bar{P} = () \)

- All the points will be stored in this array in ascending order of y-coordinate.
- To be produced by merging \(P_1 \) and \(P_2 \).
Dominance counting

\[P_1 = (p_3, p_1, p_4, p_2) \]
\[P_2 = (p_8, p_7, p_5, p_6) \]

State
- \[\bar{P} = () \]
Dominance counting

- $P_1 = (p_3, p_1, p_4, p_2)$
- $P_2 = (p_8, p_7, p_5, p_6)$
- State
 - $\bar{P} = (p_8)$
 - p_8 dominates 0 point in P_1.

Index

- p_1^y at index 0
- p_2^y at index 3
- p_3^y at index 0
- p_4^y at index 2
- p_5^y
- p_6^y
- p_7^y
- p_8^y
Dominance counting

- $P_1 = (p_3, p_1, p_4, p_2)$
- $P_2 = (p_8, p_7, p_5, p_6)$
- State
 - $\bar{P} = (p_8, p_3)$
Dominance counting

- $P_1 = (p_3, p_1, p_4, p_2)$
- $P_2 = (p_8, p_7, p_5, p_6)$
- State
 - $\bar{P} = (p_8, p_3, p_1)$

![Diagram showing dominance counting with index and arrows between points.]
Dominance counting

\[P_1 = (p_3, p_1, p_4, p_2) \]
\[P_2 = (p_8, p_7, p_5, p_6) \]

State

- \(\bar{P} = (p_8, p_3, p_1, p_7) \)
- \(p_7 \) dominates 2 point in \(P_2 \)
Dominance counting

- $P_1 = (p_3, p_1, p_4, p_2)$
- $P_2 = (p_8, p_7, p_5, p_6)$
- State
 - $\bar{P} = (p_8, p_3, p_1, p_7, p_5)$
 - p_5 dominates 2 point in P_1
Dominance counting

- $P_1 = (p_3, p_1, p_4, p_2)$
- $P_2 = (p_8, p_7, p_5, p_6)$
- State
 - $\bar{P} = (p_8, p_3, p_1, p_7, p_5, p_4)$
Dominance counting

- $P_1 = (p_3, p_1, p_4, p_2)$
- $P_2 = (p_8, p_7, p_5, p_6)$
- State
 - $\bar{P} = (p_8, p_3, p_1, p_7, p_5, p_4, p_2)$
Dominance counting

$P_1 = (p_3, p_1, p_4, p_2)$

$P_2 = (p_8, p_7, p_5, p_6)$

State

- $P = (p_8, p_3, p_1, p_7, p_5, p_4, p_2, p_6)$
- p_6 dominates 4 points in P_1.

index

- P_1: p_2^\uparrow, p_4^\uparrow, p_6^\uparrow (index 4)
- P_2: p_5^\uparrow, p_7^\uparrow (index 3)
- P: p_1^\uparrow, p_3^\uparrow (index 1)
Dominance counting

\[P_1 = (p_3, p_1, p_4, p_2). \]
\[P_2 = (p_8, p_7, p_5, p_6). \]
\[\bar{P} = (p_8, p_3, p_1, p_7, p_5, p_4, p_2, p_6). \]

Current time complexity: \(O(n) \).
Dominance counting

- Analysis

 - Let $f(n)$ be the worst-case running time of the algorithm on n points.
 - $f(n) \leq 2f(\lceil n/2 \rceil) + O(n)$,
 - which solves to $f(n) = O(n\log n)$.