Problem 1 (20%). Consider applying the algorithm discussed in the class to calculate the edit distance between strings $s = \text{“honda”}$ and $t = \text{“pony”}$. Recall that the algorithm fills in a matrix. Show the values for all the cells in the matrix.

Solution.

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>o</th>
<th>n</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>o</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>n</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>a</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Problem 2 (20%). Assuming $m \geq n$, give an algorithm to multiply an $m \times n$ matrix A with an $n \times m$ matrix B in $O(m^2 \cdot n^{0.81})$ time. You can assume that m is a multiple of n.

Solution. Cut A and B each into m/n sub-matrices of dimensions $n \times n$. The product AB can be obtained by multiplying each sub-matrix of A with each sub-matrix of B using Strassen’s algorithm in $O(n^{2.81})$ time. The total running time is $O(m^2 \cdot n^{0.81})$.

Problem 3 (20%) Let A be an array of n integers. Consider the following recursive function which is defined for any i, j satisfying $1 \leq i \leq j \leq n$:

$$f(i, j) = \begin{cases} 0 & \text{if } i = j \\ A[i] \cdot A[j] + \min_{k=i+1}^{j-1} \{f(i, k) + f(k, j)\} & \text{if } i \neq j \end{cases}$$

Design an algorithm to calculate $f(1, n)$ in $O(n^3)$ time.

Solution. First set $f(i, i) = 0$ for all $i \in [1, n]$. In general, after calculating all $f(i, j)$ with $j - i = s$ (for some integer $s \geq 0$), calculate $f(i, j)$ for all i, j satisfying $j - i = s + 1$. In this way, each $f(i, j)$ can be obtained in $O(n)$ time. Since there are $O(n^2)$ values to compute, the total running time is $O(n^3)$.

Problem 4 (20%). Let S be a set of n integers where n is a power of 2. We want to design an algorithm to output the i-th smallest integer in S for $i = 2^0, 2^1, 2^2, \ldots, 2^{\log_2 n}$ (namely, $1 + \log_2 n$ integers to output in total). For example, suppose that the input array is $(8, 10, 2, 4, 12, 16, 14, 6)$; we should output 2, 4, 8, and 16. Attempt the following tasks:

(a) (5%) Prove: Suppose that, for some $i \geq 2$, we have already collected the i smallest integers in S into some array A (which is not necessarily sorted). We can obtain in $O(i)$ time the $i/2$ smallest integers in S.
(b) (2%) Prove: \(1 + 2 + 4 + 8 + \ldots + n/2 + n = O(n)\).

(c) (13%) Design an algorithm to find the \(1 + \log_2 n\) integers in \(O(n)\) time.

Solution. (a) Use \(k\)-selection to find the \((i/2)\)-th smallest integer \(x\) in \(A\). Then collect all the integers in \(A\) that are at most \(x\).

(b) Solution obvious and omitted.

(c) Define \(S_i\) as the set of \(i\) smallest integers in \(S\). After obtaining \(S_i\), we can find the \((i/2)\)-th smallest integer in \(O(i)\) time. Using (a), \(S_{i/2}\) can also be obtained in \(O(i)\) time. The algorithm then runs recursively from \(i = n\) (and ends at \(i = 2\)).

Problem 5 (20%). Let \(I\) be a set of \(n\) intervals, each of which is in the domain \([0, U]\) for some very large \(U \gg n\). It is guaranteed that the union of all the intervals in \(I\) equals \([0, U]\) (i.e., every value in \([0, U]\) is covered by at least one interval in \(I\)). We want to pick the smallest number of intervals in \(I\) whose union equals \([0, U]\).

For example, suppose that \(I = \{[10, 15], [0, 35], [20, 50], [55, 60], [5, 30], [0, 25], [40, 60], [45, 50], [25, 45]\}\) and \(U = 60\). We need to pick at least 3 intervals, e.g., \([0, 35], [20, 50], [40, 60]\). Another optimal solution is \([0, 25], [25, 45], [40, 60]\).

Attempt the following tasks:

(a) (5%) Suppose that \(I\) is the longest interval in \(I\) that starts from 0 (e.g., \(I = [0, 35]\) in the above example). Prove: \(I\) must appear in an optimal solution.

(b) (15%) Describe an algorithm to find an optimal solution. Your algorithm should finish in polynomial time, e.g., \(O(n^{100})\).

Solution. (a) Take any optimal solution. Identify the interval \(I'\) therein that covers 0. Replace \(I'\) with \(I\), which still yields a solution of the same size.

(b) Find the longest interval \(I\) covering 0. Suppose that \(I = [0, x]\). Discard all the intervals in \(S\) that are contained in \(I\). For each remaining interval \([a, b] \in S\), if \(x \in [a, b]\), trim the interval into \([x, b]\). Then recursively to pick the smallest number of intervals in \(S\) to cover \([x, U]\). Return those intervals together with \(I\).