Computational Complexity 4: NP-Completeness of the Clique Decision Problem

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
Recall:

The **NP-complete class** — denoted as **NPC** — is the set of decision problems π such that

- π is in NP;
- if π can be *solved* in polynomial time, then every problem in NP can be *solved* in polynomial time.

Once the first NPC problem has been found, it is much easier to prove the second.

Theorem: Let π^* be a decision problem in NPC. If π^* can be reduced to another decision problem π in polynomial time, then π must be NP-hard.
Hence, if π is also in NP, π is NP-complete.
Recall

The Clique Decision Problem: Let $G = (V, E)$ be an undirected graph. Given an integer k, decide whether we can find a set S of at least k vertices in V that are mutually connected (i.e., there is an edge between any two vertices in S). Those k vertices and the edges among them form a k-clique.

Example: Consider

The answer is “yes” for $k \leq 3$, but “no” for $k \geq 4$.
Recall:

3-SAT

Variable: a boolean unknown x that can be assigned 0 or 1.

Literal: a variable x or its negation \bar{x}.

Clause: the OR of up to 3 literals.

Formula: the AND of clauses

The 3-SAT problem: Is there an assignment to the variables under which the formula evaluates to 1? Such an assignment is called a **truth assignment**.

Example:

$$(x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3 \lor x_4) \land (\bar{x}_1 \lor \bar{x}_4)$$

The answer is “yes”. A certificate: $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 0$.

$$(x_1) \land (\bar{x}_1 \lor x_2) \land (\bar{x}_2)$$

The answer is “no”.
Recall

Theorem: 3-SAT is NP-complete.

Next we will prove the NP-completeness of the clique decision problem with a reduction **from** the 3-SAT problem. Specifically, we will prove:

Theorem: If we have an algorithm A solving the clique decision problem in polynomial time, we can solve the 3-SAT problem using A in polynomial time.

The next few slides serve as a proof of the theorem.
Given an input to 3-SAT — namely a formula F with k clauses — we will construct a graph $G(V, E)$ such that F has a truth assignment if and only if G has a k-clique.

We construct $G(V, E)$ as follows:

- For each clause, create a vertex in V for every literal in the clause.
- For each pair of distinct vertices $u, v \in V$, create an edge $\{u, v\}$ in E if
 - The literals corresponding to u, v are not in the same clause.
 - The literals corresponding to u, v are not negations of each other.
Example 1

Consider formula \(F = (x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3 \lor x_4) \land (\bar{x}_1 \lor \bar{x}_4) \)

First step: create vertices

\[
\begin{array}{ccc}
x_1 & x_2 & \bar{x}_3 \\
\circ & \circ & \circ \\
x_2 & \circ & \circ & \circ & \circ \\
x_3 & \circ & \circ & \circ & \circ \\
x_4 & \circ & \circ & \circ & \circ \\
\end{array}
\]

Second step: create edges

\[
\begin{array}{ccc}
x_1 & x_2 & x_3 \\
\circ & \circ & \circ \\
x_2 & \circ & \circ & \circ & \circ & \circ & \circ \\
x_3 & \circ & \circ & \circ & \circ & \circ & \circ \\
x_4 & \circ & \circ & \circ & \circ & \circ & \circ \\
\end{array}
\]
Example 2

Consider formula \(F = (x_1) \land (\overline{x_1} \lor x_2) \land (\overline{x_2}) \)

First step: create vertices

\[x_1 \]
\[\overline{x_1} \]
\[x_2 \]
\[\overline{x_2} \]

Second step: create edges

\[x_1 \rightarrow \overline{x_1} \]
\[x_1 \rightarrow x_2 \]
\[x_1 \rightarrow \overline{x_2} \]
\[\overline{x_1} \rightarrow x_2 \]
\[\overline{x_1} \rightarrow \overline{x_2} \]
\[x_2 \rightarrow \overline{x_2} \]
Claim 1: If F has a truth assignment, then G has a k-clique.

Proof: Every clause has a literal set to 1 in the truth assignment. Pick such a literal from every clause. Clearly, no two literals can be negations of each other (because x and \bar{x} cannot both be 1).

Let v_i be the vertex in G corresponding to that literal in the i-th clause ($1 \leq i \leq k$). The claims follows from the fact that there is an edge between any two v_i, v_j for $1 \leq i < j \leq k$.

☐
Claim 2: If \(G \) has a \(k \)-clique, \(F \) has a truth assignment.

Proof: Let \(v_1, v_2, ..., v_k \) be the vertices of the \(k \)-clique in \(G \). Their corresponding literals must come from different clauses (because no edge exists between the vertices of two literals from the same clause). Furthermore, the literals corresponding to \(v_1, v_2, ..., v_k \) cannot be negations of each other (because no edge exists between the vertices of two literals that are negations of each other). We can therefore construct a truth assignment by setting those \(k \) literals to 1.
The construction of G clearly can be done in polynomial time. We can therefore apply the algorithm \mathcal{A} to determine whether G has a k-clique, and thereby, decide whether a truth assignment exists for F.

This shows that the clique decision problem is NP-hard.

Combining this with the obvious fact that the problem is in NP, we conclude that the problem is NP-complete.