Dynamic Programming 1: Introduction

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
This is the beginning of several lectures on the topic of dynamic programming. This technique aims to avoid repetitive computation in solving a problem recursively, and often allows us to reduce the running time from an exponential function to a polynomial function.
A Recurrence Computation Problem

Input: An array A that contains n integers.

Output: Compute the value of $F(1, n)$, where for any $i, j \in [1, n]$

$$F(i, j) = \begin{cases}
0 & \text{if } i > j \\
\left(\sum_{k=i}^{j} A[k] \right) + \min_{k=i}^{j} \left(F(i, k - 1) + F(k + 1, j) \right) & \text{otherwise}
\end{cases}$$

Yufei Tao
Dynamic Programming 1: Introduction
Example: Suppose that $A = (40, 15, 35, 10)$

We have:

- $F(1, 0) = 0$
- $F(1, 1) = 40, F(2, 2) = 15, F(3, 3) = 35, F(4, 4) = 10$
- $F(1, 2) = 70, F(2, 3) = 65, F(3, 4) = 55$
- $F(1, 3) = 155, F(2, 4) = 85$
- $F(1, 4) = 180$
Naive Recursion

The recurrence

\[
F(i, j) = \begin{cases}
0 & \text{if } i > j \\
(\sum_{k=i}^{j} A[k]) + \min_{k=i}^{j} \left\{ F(i, k - 1) + F(k + 1, j) \right\} & \text{otherwise}
\end{cases}
\]

leads to a straightforward recursive algorithm:

algorithm \(F(i, j) \)
1. **if** \(i > j \) **return** 0
2. \(\text{common} = \sum_{k=i}^{j} A[k] \)
3. \(\text{min} = \infty \)
4. **for** \(k = i \) **to** \(j \)
5. \(v = F(i, k - 1) + F(k + 1, j) \)
6. **if** \(v < \text{min} \) **then** \(\text{min} = v \)
7. **return** \(\text{common} + \text{min} \)
Naive Recursion

The algorithm in the previous slide is extremely expensive — its running time is $\Omega(3^n)$!

The crucial reason behind the inefficiency is that it does plenty of wasteful computation: e.g., if you run $F(1, 4)$, you will see that the algorithm computes $F(2, 2)$ repeatedly for 5 times!

This is a typical scenario that can be dealt with using the dynamic programming technique. Its objective is to avoid as much as possible re-computation by memorizing the $F(i,j)$ values that have already been computed.
Let us take a different approach to compute $F(i, j)$. Treat F as an $n \times n$ matrix.

Our goal is to fill in all the cells of the matrix. We will do so by processing the cells in “groups”:

Define the **group number** of cell $F(i, j)$ as $j - i$. A **group** consists of all the cells with the same group number.

Note that all the cells with negative group numbers will be filled with 0 for sure.
The “Matrix View” of Dynamic Programming

Lemma: Consider cell \(F(i, j) \); denote by \(g = j - i \) its group number. Suppose that all the cells of group number smaller than or equal to \(g - 1 \) have been properly filled. Then, we can fill in \(F(i, j) \) in \(O(n) \) time.

Proof: Follows directly from the recurrence

\[
F(i, j) = \left(\sum_{k=i}^{j} A[k] \right) + \min_{k=i} \left\{ F(i, k-1) + F(k+1, j) \right\}
\]

noticing that each \(F(i, k - 1) \) and \(F(k + 1, j) \) can be obtained in \(O(1) \) time.
An Algorithm Based on Dynamic Programming

algorithm Fill-F

1. fill all cells $F(i,j)$ satisfying $n \geq i > j \geq 1$ with 0
2. **for** $g = 0$ to $n - 1$
 /* g is the group number */
3. **for** every cell $F(i,j)$ satisfying $j - i = g$
4. apply the lemma of Slide 8 to compute $F(i,j)$
Example: Suppose that \(A = (40, 15, 35, 10) \)
We fill the cells of \(F \) in the following order:

- Cells with negative group numbers:
 Set \(F(i, j) = 0 \) for all \(i, j \) satisfying \(i > j \)

- Cells of Group 0:
 \(F(1, 1) = 40, \ F(2, 2) = 15, \ F(3, 3) = 35, \ F(4, 4) = 10 \)

- Cells of Group 1:
 \(F(1, 2) = 70, \ F(2, 3) = 65, \ F(3, 4) = 55 \)

- Cells of Group 2:
 \(F(1, 3) = 155, \ F(2, 4) = 85 \)

- The only cell with group number 3: \(F(1, 4) = 180 \)
Now let us analyze the running time of the algorithm in Slide 9.

Line 1 clearly takes $O(n^2)$ time.
The for-loop at Lines 2-4 runs for n times.
The for-loop at Lines 3-4 runs for at most n times (each group has at most n cells).
Line 4 takes $O(n)$ time.

Therefore, overall the algorithm runs in $O(n^3)$ time.
The above problem, in spite of its simplicity, illustrates adequately the rationales behind the dynamic programming technique. Recall that, by solving the problem recursively in a straightforward manner, we ended up with an exponential time complexity. Dynamic programming lowered the complexity to a polynomial function by memorizing the key information already computed, thus avoiding the need to recompute the same information again and again.