Dynamic Programming 3: Edit Distances

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
Remember that designing a dynamic programming algorithm requires discovering a **recursive structure** of the underlying problem. Today we will illustrate this through another problem: **computing the edit distance of two strings**.
Practical applications often need to evaluate the similarity of two strings. For example, when you mis-type “algorithm” as “alogrthm” at Google, you may be delighted that the search engine has corrected the spelling error for you. But why wouldn’t Google think that your mis-spelled word could be “structure”? The answer is, of course, “alogrthm” looks more similar to “algorithm” then to “structure”. To make such a clever judgement, we must resort to a metric to quantify string similarity.

We will discuss one popular metric: edit distance.
Given two strings s and t, the edit distance $\text{edit}(s, t)$ is the smallest number of following edit operations to turn s into t:

- **Insertion**: add a letter
- **Deletion**: remove a letter
- **Substitution**: replace a character with another one.
Example

Consider that \(s = \text{abode} \) and \(t = \text{blog} \). Then, \(\text{edit}(s, t) = 4 \) because

- We can change \text{abode} into \text{blog} by 4 operations:
 1. delete a \(\Rightarrow \) bode
 2. insert l after b \(\Rightarrow \) blode
 3. delete d \(\Rightarrow \) bloe.
 4. substitute e with g \(\Rightarrow \) blog

- Impossible to do so with at most 3 operations.

Remark: There could be more than one way to change \(s \) into \(t \) using the smallest number of operations. In the above example, try to come up with another 4 operations to change \text{abode} into \text{blog}.
The Edit Distance Problem

Input: A string \(s \) of \(m \) letters, and a string \(t \) of \(n \) letters.

Output: Their edit distance \(edit(s, t) \).
Some Notations

To facilitate the subsequent discussion, let us agree on some notations.

Given a string σ, denote by

- $|\sigma|$ the length of σ, i.e., how many letters there are in σ.
- $\sigma[i]$ the i-th character of σ, for each $i \in [1, |\sigma|]$.
- $\sigma[x..y]$ as the substring of σ starting from $\sigma[x]$ and ending at $\sigma[y]$. Specially, if $x > y$, then $\sigma[x..y]$ refers to the empty string.
Recurrence for Computing the Edit Distance

Lemma: Let s and t be two strings with lengths m and n, resp.

1. If $m = 0$, then $edit(s, t) = n$.
2. If $n = 0$, then $edit(s, t) = m$.
3. If $m > 0$, $n > 0$, and $s[m] = t[n]$, then $edit(s, t)$ is
 \[
 \min \begin{cases}
 1 + edit(s, t[1..n-1]) \\
 1 + edit(s[1..m-1], t) \\
 edit(s[1..m-1], t[1..n-1])
 \end{cases}
 \]
4. If $m > 0$, $n > 0$, and $s[m] \neq t[n]$, then $edit(s, t)$ is
 \[
 \min \begin{cases}
 1 + edit(s, t[1..n-1]) \\
 1 + edit(s[1..m-1], t) \\
 1 + edit(s[1..m-1], t[1..n-1])
 \end{cases}
 \]

We will prove the lemma at the end.
Calculating the recursive function in the preceding slide is a typical application of dynamic programming.
Before proceeding, let us observe several facts about the recurrence on Slide 8:

- Function $edit(.,.)$ has 2 parameters.
- The first parameter has $m + 1$ possible choices, namely, $s[1..0], s[1..1], ..., s[1..m]$.
- The second parameter has $n + 1$ possible choices, namely, $t[1..0], t[1..1], ..., t[1..n]$.
- In any case, $edit(a, b)$ depends only on $edit(a', b')$ where a' and b' are shorter than a and b, respectively.

These observations motivate us to evaluate the recursion in a bottom-up manner: starting with the short strings and then propagating to the longer ones.
Dynamic Programming

Initialize a two-dimensional array A of $m + 1$ rows and $n + 1$ columns. Label the rows as 0, ..., m, and the columns as 0, ..., n.

The algorithm aims to fill in the cell $A[i, j]$ at row i and column j as:

$$A[i, j] = edit(s[1..i], t[1..j]).$$

The value of $A[m, n]$ is therefore $edit(s, t)$.
Example

The target matrix A for $s = \text{abode}$ and $t = \text{blog}$:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
The algorithm fills in A according to the order below:

1. Fill in row 0 and column 0.
2. Fill in the cells of row 1 from left to right.
3. Fill in the cells of row 2 from left to right.
4. ...
5. Fill in the cells of row m from left to right.
The recurrence on Slide 8 guarantees that when we need to fill in a cell $A[i, j]$, all the dependent cells must have been ready.

Specifically, $A[i, j] =$

$$
\min \begin{cases}
1 + A[i, j - 1] \\
1 + A[i - 1, j] \\
A[i - 1, j - 1] \text{ if } s[i] = t[j], \text{ or } 1 + A[i - 1, j - 1] \text{ otherwise}
\end{cases}
$$
Example

$s = \text{abode}$ and $t = \text{blog}$.
The matrix A at the beginning:

\[
\begin{array}{c|cccc}
0 & - & - & - & - \\
1 & - & - & - & - \\
2 & - & - & - & - \\
3 & - & - & - & - \\
4 & - & - & - & - \\
5 & - & - & - & - \\
\end{array}
\]
Example

$s = \text{abode}$ and $t = \text{blog}$.

Fill in column 0 and row 0:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Example

$s = \text{abode}$ and $t = \text{blog}$. Now we fill in cell $A[1, 1]$. Since $s[1] = a$ which is different from $t[1] = b$, the recurrence on Lemma 8 says that $A[1, 1] = \min \left\{ \begin{array}{l} 1 + A[1, 0] = 1 \\ 1 + A[0, 1] = 1 \\ 1 + A[0, 0] = 1 \end{array} \right\}$ which is 1.
Example

$s = \text{abode}$ and $t = \text{blog}$.

Similarly, fill in the other cells in row 1.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

$s = \text{abode}$ and $t = \text{blog}$.

Now we fill in cell $A[2, 1]$. Since $s[1] = b$ which is the same as $t[1] = b$, the recurrence on Lemma 8 says that $A[2, 1] =$

$$\min \left\{ \begin{array}{l}
1 + A[2, 0] = 3 \\
1 + A[1, 1] = 2 \\
A[1, 0] = 1
\end{array} \right. $$

which is 1.

\[\begin{array}{|c|c|c|c|c|}
\hline
& 0 & 1 & 2 & 3 & 4 \\
\hline
0 & 0 & 1 & 2 & 3 & 4 \\
1 & 1 & 1 & 2 & 3 & 4 \\
2 & 2 & 1 & - & - & - \\
3 & 3 & - & - & - & - \\
4 & 4 & - & - & - & - \\
5 & 5 & - & - & - & - \\
\hline
\end{array}\]
Example

$s = \text{abode}$ and $t = \text{blog}$.

Fill in the other cells of row 2.

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 2 & 3 & 4 \\
1 & 1 & 1 & 2 & 3 & 4 \\
2 & 2 & 1 & 2 & 3 & 4 \\
3 & 3 & - & - & - & - \\
4 & 4 & - & - & - & - \\
5 & 5 & - & - & - & - \\
\end{array}
\]

The algorithm then continues in the same fashion to fill in rows 3, 4, and 5.
Running Time

Clearly, filling in one cell takes only $O(1)$ time. As there are $O(nm)$ cells to fill, the overall running time is $O(nm)$.
We now proceed to prove the lemma on Slide 8. The proof will not be tested in quizzes and exams.
Proof: Cases 1 and 2 are trivial. We will focus on proving Case 3 because Case 4 can be established with a similar argument.

Henceforth, we will consider $m > 0$, $n > 0$, and $s[m] = t[n]$.
We will first show

\[
edit(s, t) \leq \min \left\{ \begin{array}{l} 1 + edit(s, t[1..n-1]) \\ 1 + edit(s[1..m-1], t) \\ edit(s[1..m-1], t[1..n-1]) \end{array} \right.
\]

In fact, this directly follows from the fact that we can convert \(s \) into \(t \) in 3 methods:

1. Delete \(t[n] \), and use the least number of edit operations to change \(s \) into \(t[1..n-1] \). The total number of edit operations is therefore \(1 + edit(s, t[1..n-1]) \).

2. Delete \(s[m] \), and use the least number of edit operations to change \(s[1..m-1] \) into \(t \). The total number of edit operations is therefore \(1 + edit(s[1..m-1], t) \).

3. Simply change \(s[1..m-1] \) into \(t[1..n-1] \). The total number of edit operations is therefore \(edit(s[1..m-1], t[1..n-1]) \).
The rest of the proof is to establish the following non-trivial fact:

\[
edit(s, t) \geq \min \left\{ 1 + edit(s, t[1..n-1]),
1 + edit(s[1..m-1], t),
edit(s[1..m-1], t[1..n-1]) \right\}
\]

which will complete the whole proof.
Let SEQ^* be an optimal sequence of edit operations that converts s into t. Denote by $|SEQ^*|$ the length of SEQ^*. Our objective is to prove that \textbf{at least} one of the following will happen:

1. We can obtain a sequence of $|SEQ^*| - 1$ edit operations that converts s into $t[1..n - 1]$.

2. We can obtain a sequence of $|SEQ^*| - 1$ edit operations that converts $s[1..m - 1]$ into t.

3. We can obtain a sequence of $|SEQ^*|$ edit operations that converts $s[1..m - 1]$ into $t[1..n - 1]$.

This will establish the inequality of the previous slide (\textbf{think: why?}).
We will distinguish three possibilities.

Possibility 1: \(s[m] \) matches \(t[n] \) at the end of \(SEQ^* \).

In this case, \(SEQ^* \) cannot have deleted or substituted \(s[m] \) (*think:* why so for substitution?). Hence, \(SEQ^* \) itself is a sequence of operations that converts \(s[1..m-1] \) into \(t[1..n-1] \). Therefore, Case 3 happens.
Possibility 2: $s[m]$ does not match $t[n]$ at the end, but SEQ^* never deletes it.

Claim: SEQ^* must contain an operation which inserts the character matching $t[n]$.

Proof: As $s[m]$ does not match $t[n]$, there must be another character — say c — that matches $t[n]$ at the end of SEQ^*. Furthermore, c must be after $s[m]$, because $s[m]$ (probably having gone through some substitution) remains till the end and needs to match some character in t other than $t[n]$. Therefore, c must have been inserted by SEQ^*.

When SEQ^* inserted c, it must have given c the value $t[n]$. **Think:** why?

Hence, by discarding the operation described in the claim, we turn SEQ^* into a sequence of operations that converts s into $t[1..n-1]$. Therefore, Case 1 happens.
Possibility 3: SEQ^* deletes $s[m]$.

In this case, after discarding the operation deleting $s[m]$, SEQ^* becomes a sequence of operations that converts $s[1..m-1]$ into t. Therefore, Case 2 happens.
This completes the whole proof of the lemma on Slide 8.