Dynamic Programming 2: Optimal BST

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
Designing a dynamic programming algorithm, in general, requires discovering a **recursive structure** of the underlying problem. Next, we will illustrate this through the **optimal BST problem**.
Review: Binary Search Tree (BST)

- Each node stores a **key**.
- The key of an internal node u is **larger** than any key in its **left** subtree, and **smaller** than any key in its **right** subtree.
The level of a node u in a BST T — denoted as $\text{level}_T(u)$ — equals the number of edges on the path from the root to u.

- The level of the root is 0.

The depth of a tree is the maximum level of the nodes in the tree.

Searching for a node u incurs cost proportional to $1 + \text{level}_T(u)$.

- How many nodes do you need to access to search for node 10, 20, 30, and 40, respectively?
Let S be a set of n integers.
We know that a balanced BST on S has depth $O(\log n)$.
This is good if we assume that all the integers in S are searched with equal probabilities.

In practice, not all keys are equally important: some are searched more often than others. This gives rise to an interesting question:

If we know the search frequencies of the integers in S, how to build a better BST to minimize the average search cost?
Example:

Suppose that we know the frequencies of 10, 20, 30, and 40 are 40%, 15%, 35%, and 10%, respectively. Then, the average cost of searching for a key in the BST equals:

\[
freq(10) \cdot cost(10) + freq(20) \cdot cost(20) + \\
freq(30) \cdot cost(30) + freq(40) \cdot cost(40)
\]

\[
= 40\% \cdot 2 + 15\% \cdot 1 + 35\% \cdot 3 + 10\% \cdot 2
\]

\[
= 2.2
\]

where \(freq(k)\) denotes the search frequency of key \(k\), and \(cost(k)\) denotes the cost of searching for \(k\) in the tree.
The Optimal BST Problem

Input:
- A set S of n integers: \{1, 2, ..., n\};
- An array W where $W[i]$ ($1 \leq i \leq n$) stores a positive integer weight.

Output:
A BST T on S with the smallest average cost:

$$
\text{avgcost}(T) = \sum_{i=1}^{n} W[i] \cdot \text{cost}_T(i).
$$

where $\text{cost}_T(i) = 1 + \text{level}_T(i)$ is the number of nodes accessed to find the key i in T.

Think: here we consider that the keys are 1, 2, ... n, respectively; do we lose any generality?
A Slightly More General Problem

We will solve a more general version of the problem.

Input:
- \(S \) and \(W \) same as before;
- Integers \(a, b \) satisfying \(1 \leq a \leq b \leq n \).

Output:
A BST \(T \) on \(\{a, a + 1, \ldots, b\} \) with the smallest **average cost**:

\[
\text{avgcost}(T) = \sum_{i=a}^{b} W[i] \cdot \text{cost}_T(i).
\]

where \(\text{cost}_T(i) = 1 + \text{level}_T(i) \) is the number of nodes accessed to find the key \(i \) in \(T \).
As mentioned, an important step in designing a dynamic programming algorithm is to figure out the recursive structure of the underlying problem. Typically, this involves three steps:

1. Identify all the possible options for the “first” choice;
2. Conditioned on the first choice, find the optimal solution;
3. Take the first choice that leads to the overall best solution.

Next, we will explain how to do so for the optimal BST problem.
1. Find all the Options for the First Choice

First Choice: Key at the root of T?

Clearly, we have $b - a + 1$ options: we can put $a, a + 1, \ldots, b$ as the key at the root.

Suppose that we put r as the key at the root for some $r \in [a, b]$. Then, its left subtree must be a BST T_1 on $S_1 = \{a, \ldots, r - 1\}$, and its right subtree must be a BST T_2 on $S_2 = \{r + 1, \ldots, b\}$.
Example: $S = \{1, 2, 3, 4\}; \ W = (40, 15, 35, 10)$.

Consider the option of putting 2 at the root. The left subtree must contain just a single leaf with the key 1.

The right subtree, on the other hand, has two choices:

- ![Diagram 1](https://via.placeholder.com/150)
- ![Diagram 2](https://via.placeholder.com/150)
2. Conditioned on the First Choice, Find the Optimal Solution:
Put r at the root of T. Next, we will show that, to minimize the average cost of T, we should choose the best trees for T_1 and T_2.

\[
\text{avgcost}_T
\]

\[
= \sum_{i=a}^{b} W[i] \cdot \text{cost}_T(i) = \sum_{i=a}^{b} W[i] \cdot (1 + \text{level}_T(i))
\]

\[
= \left(\sum_{i=a}^{b} W[i] \right) + \sum_{i=a}^{b} W[i] \cdot \text{level}_T(i)
\]

\[
= \left(\sum_{i=a}^{b} W[i] \right) + \left(\sum_{i=a}^{r-1} W[i] \cdot \text{level}_T(i) \right) + \left(\sum_{i=r+1}^{b} W[i] \cdot \text{level}_T(i) \right)
\]

(Continuing on the next slide)
\[
\begin{align*}
&= \left(\sum_{i=a}^{b} W[i] \right) + \left(\sum_{i=a}^{r-1} W[i] \cdot (1 + \text{level}_{T_1}(i)) \right) + \\
&\quad \left(\sum_{i=r+1}^{b} W[i] \cdot (1 + \text{level}_{T_2}(i)) \right) \\
&= \left(\sum_{i=a}^{b} W[i] \right) + \left(\sum_{i=a}^{r-1} W[i] \cdot \text{cost}_{T_1}(i) \right) + \left(\sum_{i=r+1}^{b} W[i] \cdot \text{cost}_{T_2}(i) \right) \\
&= \left(\sum_{i=a}^{b} W[i] \right) + \text{avgcost}_{T_1} + \text{avgcost}_{T_2}
\end{align*}
\]

Clearly, we should minimize \(\text{avgcost}_{T_1} \) and \(\text{avgcost}_{T_2} \), namely, building optimal BSTs on \(S_1 \) and \(S_2 \), recursively.
Example: $S = \{1, 2, 3, 4\}$; $W = (40, 15, 35, 10)$.

Consider the option of putting 2 at the root. As mentioned, the right subtree has two choices:

We know from the above discussion that the right subtree should be an optimal BST on $\{3, 4\}$. Which of the above two choices is optimal on $\{3, 4\}$?

The answer is the second one: it has an average cost of $35 \cdot 1 + 10 \cdot 2 = 55$.
Define $optavg(a, b)$ as
- 0, if $a > b$;
- the smallest average cost of a BST on $\{a, a + 1, \ldots, b\}$, otherwise.

Define $optavg(a, b \mid r)$ as the optimal average cost of a BST, on condition that the BST has r as the key of the root.

The previous discussion has essentially proved:

$$
optavg(a, b \mid r) = \left(\sum_{i=a}^{b} W[i] \right) + optavg(a, r - 1) + optavg(r + 1, b).
$$
Example: \(S = \{1, 2, 3, 4\}; \ W = (40, 15, 35, 10) \).

Consider the option of putting 2 at the root.

\[
\text{optavg}(1, 4 \mid 2) = \left(\sum_{i=1}^{4} W[i] \right) + \text{optavg}(1, 1) + \text{optavg}(3, 4) = 100 + 40 + 55 = 195.
\]

Hence, **if we want to put 2 at the root**, the best BST we can construct has average cost 195.
3. **Selecting the Best First Choice:** The best choice for r is the one that leads to the smallest average cost, namely:

\[
\begin{align*}
\text{optavg}(a, b) &= \min_{r=a}^{b} \text{optavg}(a, b | r) \\
&= \left(\sum_{i=a}^{b} W[i] \right) + \min_{r=a}^{b} \left\{ \text{optavg}(a, r - 1) + \text{optavg}(r + 1, b) \right\}.
\end{align*}
\]

This is the recursive structure of the problem.
Example: \(S = \{1, 2, 3, 4\}; \ W = (40, 15, 35, 10). \)
The optimal tree is actually:

\[
\begin{array}{c}
\text{1} \\
\text{3}
\end{array}
\begin{array}{c}
\text{2} \\
\text{4}
\end{array}
\]

\[
\begin{align*}
\text{optavg}(1, 4) &= \text{optavg}(1, 4 | 3) \\
&= \left(\sum_{i=1}^{4} W[i] \right) + \text{optavg}(1, 2) + \text{optavg}(4, 4) \\
&= 100 + \text{optavg}(1, 2) + 10 = 110 + \text{optavg}(1, 2) \\
&= 110 + \text{optavg}(1, 2 | 1) \\
&= 110 + \left(\sum_{i=1}^{2} W[i] \right) + \text{optavg}(1, 0) + \text{optavg}(2, 2) \\
&= 110 + 55 + 0 + 15 = 180.
\end{align*}
\]
Putting Everything Together

We have converted the optimal BST problem into the following problem:

Input: An array \(W \) of \(n \) integers.

Output: Compute \(\text{optavg}(1, n) \) where for any \(a, b \in [1, n] \):

\[
\text{optavg}(a, b) = \begin{cases}
0, & \text{if } a > b \\
\left(\sum_{i=a}^{b} W[i] \right) + \min_{r=a}^{b} \left\{ \text{optavg}(a, r - 1) + \text{optavg}(r + 1, b) \right\}, & \text{otherwise}
\end{cases}
\]

This is precisely the problem we studied in the previous lecture! Recall that with dynamic programming, we can compute \(\text{optavg}(1, n) \) in \(O(n^3) \) time.
Strictly speaking, there is one more step: although we have calculated $optavg(1, n)$, we still have not produced the optimal BST yet!

This is, in fact, rather trivial — you can do so in $O(n)$ time after computing $optavg(1, n)$ with dynamic programming. This will be left as a regular exercise.