All-Pairs Shortest Paths

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
In this lecture, we will look at a problem called all-pairs shortest paths which is closely related to the SSSP (single-source shortest path) problem discussed in the previous lectures.

We will learn two algorithms: the Floyd-Warshall algorithm and Johnson’s algorithm. The first one is a standard dynamic programming algorithm, while the second is based on a new technique — called re-weighting — that removes all negative edges.
All-Pairs Shortest Paths (APSP)

Input: Let $G = (V, E)$ be a directed graph. Let w be a function that maps each edge in E to an integer, which can be positive, 0, or negative. It is guaranteed that G has no negative cycles.

Output: The shortest path (SP) from node s to node t, for every $s \in V$ and every $t \in V$.

We will focus on finding the shortest path distance $\text{spdist}(s, t)$ for every $s, t \in V$. Extending the algorithm to report paths is easy and left to you.
We will explain how to compute the following:

\[\text{spdist}(a, a) = 0, \quad \text{spdist}(a, b) = 1, \quad \ldots, \quad \text{spdist}(a, g) = -9 \]

\[\text{spdist}(b, a) = \infty, \quad \text{spdist}(b, b) = 0, \quad \ldots, \quad \text{spdist}(b, g) = -4 \]

\[\ldots \]

\[\text{spdist}(g, a) = \infty, \quad \text{spdist}(g, b) = \infty, \quad \ldots, \quad \text{spdist}(g, g) = 0 \]
If all the weights are non-negative, we can run Dijkstra’s algorithm \(|V|\) times. The total running time is \(O(|V|(|V| + |E|) \log |V|)\).

For the general APSP problem (i.e., arbitrary weights), we can run Bellman-Ford’s algorithm \(|V|\) times. The total running time is \(O(|V|^2|E|)\).

At the end of the lecture, we will be able to solve the (general) APSP problem in

\[
O \left(\min\{|V|^3, |V|(|V| + |E|) \log |V|\} \right).
\]

Note that the complexity strictly improves that in the second box.
The Floyd-Warshall Algorithm
Set \(n = |V| \).
We will assign to every vertex in \(V \) a distinct id from 1 to \(n \).

Example:

Let us assign 1 to vertex \(a \), 2 to \(b \), ..., 7 to \(g \).
Define \(spdist(i, j \mid \leq k) \) as the smallest length of all paths from \(i \) to \(j \) that pass only vertices with ids \(\leq k \) (except of course the start vertex \(i \) and end vertex \(j \)).

Example:

Let us assign 1 to vertex \(a \), 2 to \(b \), ..., 7 to \(g \).

\[
spdist(1, 5 \mid 1) = \infty, \quad spdist(1, 5 \mid 2) = \infty, \quad spdist(1, 5 \mid 3) = -1, \\
spdist(1, 5 \mid 4) = -1, \quad spdist(1, 5 \mid 5) = -1, \quad spdist(1, 5 \mid 6) = -1, \\
spdist(1, 5 \mid 7) = -6
\]
Lemma:

\[\text{spdist}(i, j | \leq k) = \min \left\{ \begin{array}{l}
\text{spdist}(i, j | \leq k - 1) \\
\text{spdist}(i, k | \leq k - 1) + \text{spdist}(k, j | \leq k - 1)
\end{array} \right\} \]

The proof is simple and left to you.

Observe that \(\text{spdist}(i, j | \leq n) = \text{spdist}(i, j) \).

Our goal is therefore to compute \(\text{spdist}(i, j | \leq n) \) for all \(i, j \in [1, n] \).

This clearly points to a dynamic programming algorithm that finishes in \(O(|V|^3) \) time.
Johnson’s Algorithm
Recall:

If all the weights are non-negative, we can run Dijkstra’s algorithm \(|V|\) times. The total running time is \(O(|V|(|V| + |E|) \log |V|)\).

But remember we are tackling a graph where edge weights can be negative. Can we convert all the weights into non-negative values so that we can apply the above strategy? The challenge is to carry out the conversion without affecting any shortest paths.
Re-weighting

Introduce an arbitrary function $h : V \to \mathbb{Z}$, where \mathbb{Z} represents the set of integer values.

For each edge (u, v) in E, redefine its weight as:

$$w'(u, v) = w(u, v) + h(u) - h(v).$$

Denote by G' the graph where

- the set V of vertices and the set E of edges are the same as G;
- the edges are weighted using function w'.
Lemma: Consider any path \(v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_x \) in \(G \) where \(x \geq 1 \). If the path has length \(\ell \), then it has length \(\ell + h(v_1) - h(v_x) \) in \(G' \).

Proof: The length of the path in \(G' \) is

\[
\sum_{i=1}^{x-1} w'(v_i, v_{i+1})
\]

\[
= \sum_{i=1}^{x-1} (w(v_i, v_{i+1}) + h(v_i) - h(v_{i+1}))
\]

\[
= \left(\sum_{i=1}^{x-1} w(v_i, v_{i+1}) \right) + h(v_1) - h(v_x).
\]
Re-weighting

Corollary: If G has no negative cycles, G' has no negative cycles.

Proof: If $v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_x$ is a cycle, then $v_1 = v_x$. The previous lemma indicates that its length in G is the same as its length in G'.

Corollary: Let π be a path from vertex u to vertex v in G. If π is a shortest path in G, it is also a shortest path in G'.

Proof: Let π' be any other path from u to v in G'. Denote by ℓ and ℓ' the length of π and π', respectively. It holds that $\ell \leq \ell'$. By the lemma of the previous slide, we know that π and π' have lengths $\ell + h(u) - h(v)$ and $\ell' + h(u) - h(v)$, respectively.
Example:

\[h(a) = 0 \]
\[h(b) = 0 \]
\[h(c) = 0 \]
\[h(d) = -6 \]
\[h(e) = -6 \]
\[h(f) = -7 \]
\[h(g) = -9 \]

After re-weighting:
For our goal (i.e., turning all weights to non-negative), we must ensure:

\[w(u, v) \geq 0 \]

for all edges \((u, v)\) in \(E\). Not every function \(h(.)\) can fulfill the purpose. In the example of the previous slide, we have provided such a function for illustration purposes.

But how to find such a “good” \(h(.)\) in general? This calls for a second idea deployed by Johnson’s algorithm, which always gives us a good function \(h(.)\). In fact, the function \(h(.)\) used in the previous slide was obtained using that idea, as we show next.
A “Dummy-Vertex” Trick

From \(G = (V, E) \), let us construct a graph \(G^\Delta = (V^\Delta, E^\Delta) \) where:

- \(V^\Delta = V \cup \{v_{dummy}\} \);
- \(E^\Delta \) includes all the edges in \(E \), and additionally, a new edge from \(V^\Delta \) to every other vertex in \(V \);
- Each edge inherited from \(E \) carries the same weight as in \(E \). Every newly added edge carries the weight 0.

Example:
A “Dummy-Vertex” Trick

In $G^\Delta = (V^\Delta, E^\Delta)$, find the shortest path distance from v_{dummy} to every other vertex. This is an SSSP problem which can be solved by Bellman-Ford’s algorithm in $O(|V||E|)$ time.

Example:

$$spdist(v_{dummy}, a) = 0$$
$$spdist(v_{dummy}, b) = 0$$
$$spdist(v_{dummy}, c) = 0$$
$$spdist(v_{dummy}, d) = -6$$
$$spdist(v_{dummy}, e) = -6$$
$$spdist(v_{dummy}, f) = -7$$
$$spdist(v_{dummy}, g) = -9$$
A “Dummy-Vertex” Trick

Recall that we were looking for a good function $h(.)$ to re-weight the edges of G.

We have just found our function $h(.)$:

$$h(u) = \text{spdist}(v_{\text{dummy}}, u)$$

for every $u \in V$.

After re-weighting the edges of G with the above $h(.)$, we are guaranteed that all edge weights (in the graph G' obtained after re-weighting) must be non-negative.

Proving the above is easy and will be left as an exercise.
We therefore have obtained an algorithm to solve the APSP problem (with negative weights) in time $O(|V|(|V| + |E|) \log |V|)$.