Problem 1*. Let $G = (V, E)$ be a weighted directed acyclic graph. Given a source vertex $s \in V$, design an algorithm to find the shortest path distances from s to the vertices in V. Your algorithm should terminate in $O(|V| + |E|)$ time.

Problem 2. Let $G = (V, E)$ be a weighted directed graph where the weight of an edge (u, v) is $w(u, v)$. It is guaranteed that G has no negative cycles. Prove: the following is a correct implementation of Bellman-Ford’s algorithm:

```
algorithm Bellman-Ford
1. pick an arbitrary vertex $s \in V$
2. set $\lambda$ to the sum of all the positive edge weights in $G$
3. initialize $dist(s) = 0$ and $dist(v) = \lambda$ for every other vertex $v \in V$
4. for $i = 1$ to $|V| - 1$
5. relax all the edges in $E$
6. return $dist(v)$ for all $v \in V$
```

Remark: Compared to the description in our lecture notes, the key difference here is that, at Line 3, we initialize $dist(v)$ as λ, instead of ∞.

Problem 3*. Let $G = (V, E)$ be a weighted directed graph where the weight of an edge (u, v) is $w(u, v)$. Prove: the following algorithm correctly decides whether G has a negative cycle:

```
algorithm negative-cycle-detection
1. pick an arbitrary vertex $s \in V$
2. set $\lambda$ to the sum of all the positive edge weights in $G$
3. initialize $dist(s) = 0$ and $dist(v) = \lambda$ for every other vertex $v \in V$
4. for $i = 1$ to $|V| - 1$
5. relax all the edges in $E$
6. for each edge $(u, v) \in E$
7. if $dist(v) > dist(u) + w(u, v)$ then
8. return “there is a negative cycle”
9. return “no negative cycles”
```

Problem 4. In our lecture about the Floyd-Warshall algorithm, we have given the following recursive function:

$$spdist(i, j | \leq k) = \min \left\{ \begin{array}{ll}
spdist(i, j | \leq k - 1) \\
spdist(i, k | \leq k - 1) + spdist(k, j | \leq k - 1)
\end{array} \right\}$$

Give the details of computing $spdist(i, j)$ for all $i, j \in [1, n]$ in $O(n^3)$ time.

Problem 5. Augment your algorithm for the previous problem to compute the shortest path between vertex i and vertex j, for all $i, j \in [1, n]$.