Problem 1*. Let $G = (V, E)$ be a weighted directed acyclic graph. Given a source vertex $s \in V$, design an algorithm to find the shortest path distances from s to the vertices in V. Your algorithm should terminate in $O(|V| + |E|)$ time.

Solution. First run DFS on G to obtain a topological order of V. For each $v \in V$, initialize a value $\text{dist}(v)$ which equals 0 if $v = s$, and ∞ otherwise. Now, process the vertices of V according to the topological order. Specifically, processing a vertex u means relaxing all the out-going edges (u,v) of u. After every vertex has been processed, the final $\text{dist}(v)$ is the shortest path distance from s to v, for every $v \in V$.

To prove this is correct, recall that (as discussed earlier in the lecture) the shortest-path distances $\text{spdist}(s,v)$ from s to $v \in V$ satisfy:

$$\text{spdist}(s,v) = \min_{u \in \text{IN}(v)} \text{spdist}(s,u) + w(u,v)$$

where $w(u,v)$ denotes the weight of the edge (u,v), and $\text{IN}(v)$ is the set of in-neighbors of v. The correctness of our algorithm thus follows from:

Claim: At the moment right before v is processed, $\text{spdist}(u)$ has already been computed for every $u \in \text{IN}(v)$.

The above claim can be easily established by induction on the number of edges in a shortest path.

Problem 2. Let $G = (V, E)$ be a weighted directed graph where the weight of an edge (u,v) is $w(u,v)$. It is guaranteed that G has no negative cycles. Prove: the following is a correct implementation of Bellman-Ford’s algorithm:

Algorithm Bellman-Ford

1. Pick an arbitrary vertex $s \in V$
2. Set λ to the sum of all the positive edge weights in G
3. Initialize $\text{dist}(s) = 0$ and $\text{dist}(v) = \lambda$ for every other vertex $v \in V$
4. For $i = 1$ to $|V| - 1$
5. Relax all the edges in E
6. Return $\text{dist}(v)$ for all $v \in V$

Remark: Compared to the description in our lecture notes, the key difference here is that, at Line 3, we initialize $\text{dist}(v)$ as λ, instead of ∞.

Solution. Follows directly from the fact that, to every vertex $v \in V$, s has a shortest path that is a simple path. Notice that every simple path has a length at most λ.

Problem 3*. Let $G = (V, E)$ be a weighted directed graph where the weight of an edge (u,v) is $w(u,v)$. Prove: the following algorithm correctly decides whether G has a negative cycle:

Algorithm negative-cycle-detection

1. Pick an arbitrary vertex $s \in V$
2. Set λ to the sum of all the positive edge weights in G
3. initialize $dist(s) = 0$ and $dist(v) = \lambda$ for every other vertex $v \in V$
4. for $i = 1$ to $|V| - 1$
5. relax all the edges in E
6. for each edge $(u, v) \in E$
7. if $dist(v) > dist(u) + w(u, v)$ then
 return “there is a negative cycle”
8. return “no negative cycles”

Solution. We will prove two directions.

Direction 1: If the inequality of Line 6 holds for any edge (u, v), then there must be a negative cycle. In the lecture we proved that, in the absence of negative cycles, Bellman-Ford’s algorithm correctly finds all shortest path distances (from s) after $|V| - 1$ rounds of edge relaxations. This (together with the result of Problem 2) indicates that, if there are no cycles, when we come to Line 5 the value $dist(v)$ must be the final shortest path distance for every $v \in V$. If Line 6 holds for some edge (u, v), however, it means that an even shorter path from s to v has just been discovered. Therefore, in such a case, G must contain a negative cycle.

Direction 2: If there is a negative cycle, then the inequality of Line 6 must hold for at least one edge (u, v). Suppose that the negative cycle is $v_1 \to v_2 \to \ldots \to v_{\ell} \to v_1$. Hence:

$$w(v_{\ell}, v_1) + \sum_{i=1}^{\ell-1} w(v_i, v_{i+1}) < 0. \quad (1)$$

Assume that Line 6 does not hold on any edge in E. This indicates:

- for every $i \in [1, n]$, $dist(v_{i+1}) \leq dist(v_i) + w(v_i, v_{i+1})$;
- $dist(v_1) \leq dist(v_n) + w(v_n, v_1)$.

These two bullets lead to:

$$\sum_{i=1}^{\ell} dist(v_i) \leq \left(\sum_{i=1}^{\ell} dist(v_i) \right) + w(v_{\ell}, v_1) + \sum_{i=1}^{\ell-1} w(v_i, v_{i+1})$$
$$\Rightarrow 0 \leq w(v_{\ell}, v_1) + \sum_{i=1}^{\ell-1} w(v_i, v_{i+1})$$

which contradicts (1).

Problem 4. In our lecture about the Floyd-Warshall algorithm, we have given the following recursive function:

$$spdist(i, j | \leq k) = \min \left\{ spdist(i, j | \leq k - 1), spdist(i, k | \leq k - 1) + spdist(k, j | \leq k - 1) \right\}$$

Give the details of computing $spdist(i, j)$ for all $i, j \in [1, n]$ in $O(n^3)$ time.

Solution.

algorithm Floyd-Warshall
1. for all $i, j \in [1, n]$
2. set \(spdist(i, j | \leq 0) = 0 \) if \(i = j \) or \(\infty \) otherwise
3. for \(k = 1 \) to \(n \)
4. for all \(i, j \in [1, n] \)
5. set \(spdist(i, j | \leq k) \) according to the recursive function

Problem 5. Augment your algorithm for the previous problem to compute the shortest path between vertex \(i \) and vertex \(j \), for all \(i, j \in [1, n] \).

Solution.

algorithm Floyd-Warshall
1. for all \(i, j \in [1, n] \)
2. set \(spdist(i, j | \leq 0) = 0 \) if \(i = j \) or \(\infty \) otherwise
3. set \(bestchoice(i, j) = \text{nil} \)
4. for \(k = 1 \) to \(n \)
5. for all \(i, j \in [1, n] \)
6. if \(spdist(i, j | \leq k - 1) \leq spdist(i, k - 1 | \leq k - 1) + spdist(k - 1, j | \leq k - 1) \) then
7. \(spdist(i, j | \leq k) = spdist(i, j | \leq k - 1) \)
8. else
9. \(spdist(i, j | \leq k) = spdist(i, k - 1 | \leq k - 1) + spdist(k - 1, j | \leq k - 1) \)
10. \(bestchoice(i, j) = k \)

The function \(bestchoice(.,.) \) computed by the above algorithm encodes all the shortest paths. Specifically, for any \(i, j \in [1, n] \) such that \(i \neq j \):

- if \(bestchoice(i, j) = \text{nil} \), the shortest path from \(i \) to \(j \) consists of just the edge \((i, j)\);
- if \(bestchoice(i, j) = k \), the shortest path concatenates the shortest path from \(i \) to \(k \) and the shortest path from \(k \) to \(j \) — note that the latter two shortest paths can be obtained recursively in the same manner.