Problem 1. Let P be a set of n integer pairs, each of which has the form (id, key). It is guaranteed that no two pairs have the same id (but there may be pairs having the same key). Describe a structure of $O(n)$ space to support each of the following operations in $O(\log n)$ time:

- Insert(i, k): add a pair (i, k) to P if P does not already have a pair with id i;
- DecreaseKey(i, k): if P does not have any pair with id i, this operation has no effects. Otherwise, suppose that the pair is (i, k'); the operation replaces the key k' of the pair with k if $k < k'$;
- DeleteMin: Remove from P the pair with the smallest key.

Problem 2. Describe how to implement Dijkstra’s algorithm on a graph $G = (V, E)$ in $O((|V| + |E|) \cdot \log |V|)$ time.

Problem 3. In the lecture we proved the correctness of Dijkstra’s algorithm. Point out the place in the proof that requires the assumption that all the weights are non-negative.

Problem 4 (SSSP with Unit Weights). Let us simplify the SSSP problem by requiring that all the edges in the input directed graph $G = (V, E)$ take the same weight, which we assume to be 1. Give an algorithm that solves the SSSP problem in $O(|V| + |E|)$ time.

(Remark: you can of course still use Dijkstra’s algorithm, but as shown earlier, its complexity is $O((|V| + |E|) \log |V|)$. You mission here is to improve the time complexity to $O(|V| + |E|)$)

Problem 5*. In the lecture, we proved the correctness of Dijkstra’s algorithm in the scenario where all the edges have positive weights. Prove: the algorithm is still correct if we allow edges to take non-negative weights (i.e., zero weights are allowed).