Problem 1. Let \(s \) and \(t \) be strings with lengths \(m \) and \(n \) respectively, satisfying the condition that \(s[m] = t[n] \). In the lecture, we proved:

\[
edit(s, t) = \min\left\{ \begin{array}{ll}
edit(s[1..m-1], t[1..n-1]) & \\
1 + edit(s, t[1..n-1]) & \\
1 + edit(s[1..m-1], t) &
\end{array} \right.
\]

Prove: the above result can be simplified into: \(edit(s, t) = edit(s[1..m-1], t[1..n-1]) \).
(Hint: you can leverage the above result in your proof.)

Solution. One way to convert \(s[1..m-1] \) to \(t[1..n-1] \) is to first insert \(s[m] \) and then perform \(edit(s, t[1..n-1]) \) operations to obtain \(t \). This shows \(edit(s[1..m-1], t[1..n-1]) \leq 1 + edit(s, t[1..n-1]) \).

A similar argument shows \(edit(s[1..m-1], t[1..n-1]) \leq 1 + edit(s[1..m-1], t) \).

Problem 2*. In the class we proved the “grand lemma” only for the case where \(s[m] = t[n] \). In this problem, we will cover the other case where \(s[m] \neq t[n] \). Let \(s \) and \(t \) be strings with lengths \(m \) and \(n \) respectively, satisfying the condition that \(s[m] \neq t[n] \). Prove:

\[
edit(s, t) = \min\left\{ \begin{array}{ll}
1 + edit(s[1..m-1], t[1..n-1]) & \\
1 + edit(s, t[1..n-1]) & \\
1 + edit(s[1..m-1], t) &
\end{array} \right.
\]

Solution. Let \(\Sigma^* \) be an optimal sequence of operations that turns \(s \) into \(t \). We claim that at least one of the following situations will occur:

- Situation 1: there exists an operation sequence of length \(|\Sigma^*| - 1 \) that turns \(s[1..m-1] \) into \(t[1..n-1] \).
- Situation 2: there exists an operation sequence of length \(|\Sigma^*| - 1 \) that turns \(s \) into \(t[1..n-1] \).
- Situation 3: there exists an operation sequence of length \(|\Sigma^*| - 1 \) that turns \(s[1..m-1] \) into \(t \).

This claim will imply the equation we are trying to prove.

To prove the claim we distinguish three possibilities:

1. **The last character of \(s \) survives till the end of \(\Sigma^* \) and matches \(t[n] \).** In this case, \(\Sigma^* \) must contain a single operation that concerns the last character of \(s \); furthermore, that operation must be a substitution that replaces the character with \(t[n] \). Removing the operation gives a sequence for Situation 1.

2. **The last character of \(s \) survives till the end, and but does not match \(t[n] \).** In this case, \(\Sigma^* \) must contain an insertion that inserts the character — say \(c \) — eventually used to match \(t[n] \). Furthermore, that insertion is the only operation that concerns \(c \). Removing the operation gives a sequence for Situation 2.

3. **The last character of \(s \) is deleted.** In this case, \(\Sigma^* \) must contain a deletion that deletes the last character of \(s \). Furthermore, that deletion is the only operation concerning that character. Removing the operation gives a sequence for Situation 3.
Problem 3. Let s be a sequence of n letters. Design an $O(n)$-time algorithm to decide whether it is possible to delete $n - 6$ letters from s so that the remaining sequence of 6 letters reads “secret”. For example, the answer is yes for “assdfecfasrdfst”, but no for “assdfecaserdst”.

Solution. Define string $t = \text{“secret”}$. For each $i \in [1, n]$ and $j \in [1, 6]$, define $deledit(i, j)$ to be the length of the shortest sequence of deletions that turns $s[1..i]$ into $t[1..j]$; if no such sequences exist, define $deledit(i, j) = \infty$. Specially, define $deledit(0, 0) = 0$, $deledit(0, j) = \infty$ for any $j \geq 1$, and $deledit(i, 0) = i$ for any $i \geq 1$.

Consider $i \geq 1, j \geq 1$. In general, if $s[i] = t[j]$, we have:

$$deledit(i, j) = \min \left\{ \begin{array}{l} deledit(s[1..i-1], t[1..j-1]) \\ 1 + deledit(s[1..i-1], j) \end{array} \right.$$

whereas if $s[i] \neq t[j]$, we have:

$$deledit(i, j) = 1 + deledit(s[1..i-1], j).$$

Note that there are $O(n)$ choices for i and $O(1)$ choices for j. Dynamic programming therefore can be used to evaluate $deledit(n, 6)$ in $O(n)$ time.

Problem 4 (Longest Common Subsequence; Section 15.4 of the Textbook). Let σ and s be two strings such that $|\sigma| \leq |s|$. We call σ a subsequence of s if it is possible to turn s into σ by repeatedly deleting letters. For example, “hell” is a subsequence of “asdfhljeljlasfdflf” but “hello” is not and neither is “hlle”.

You are given two strings s, t with lengths m and n, respectively. Give an $O(mn)$-time algorithm to find a common subsequence of s and t that has the greatest length. For example, if $s = \text{“algorithm”}$ and $t = \text{“logarithmic”}$, a possible output can be “grithm”.

Solution. For each $i \in [1, n]$ and $j \in [1, m]$, define $lcs(i, j)$ to be the greatest length of common subsequence of $s[1..i]$ and $t[1..j]$. Specially, define $deledit(0, 0) = 0$, $deledit(0, j) = 0$ for any $j \geq 1$, and $deledit(i, 0) = 0$ for any $i \geq 1$.

Consider $i \geq 1, j \geq 1$. In general, if $s[i] = t[j]$, we have:

$$lcs(i, j) = \max \left\{ \begin{array}{l} 1 + lcs(i-1, j-1) \\ lcs(i-1, j) \\ lcs(i, j-1) \end{array} \right.$$

whereas if $s[i] \neq t[j]$, we have:

$$lcs(i, j) = \max \left\{ \begin{array}{l} lcs(i-1, j-1) \\ lcs(i-1, j) \\ lcs(i, j-1) \end{array} \right.$$

There are $O(m)$ choices for i and $O(n)$ choices for j. Dynamic programming therefore can be used to evaluate $lcs(m, n)$ in $O(mn)$ time.

Remark: You can actually simplify the above recursive functions — you may refer to the textbook for details. But the simplification will not affect the running time.