Problem 1*. Let A be an array of n integers. Define a function $f(x)$ — where $x \geq 0$ is an integer — as follows:

$$f(x) = \begin{cases} 0 & \text{if } x = 0 \\ \max_{i=1}^{x} (A[i] + f(x-i)) & \text{otherwise} \end{cases}$$

Consider the following algorithm for calculating $f(x)$:

algorithm $f(x)$
1. if $x = 0$ then return 0
2. $\max = -\infty$
3. for $i = 1$ to x
4. $v = A[i] + f(x-i)$
5. if $v > \max$ then $\max = v$
6. return \max

Prove: the above algorithm takes $\Omega(2^n)$ time to calculate $f(n)$.

Solution. Let $g(x)$ denote the time of the algorithm in calculating $f(x)$. We know:

- $g(0) \geq 1$
- $g(1) \geq 1$
- $g(n) \geq \sum_{i=0}^{n-1} g(i)$

We will show by induction that $g(n) \geq 2^{n-1}$ for $n \geq 1$. First, this is obviously correct when $n = 1$. Next, we will prove the claim on $n = k$ for any $k \geq 2$, assuming that it is correct for all $n \leq k - 1$.

$$g(n) \geq \sum_{i=0}^{n-1} g(i)$$

$$\geq 1 + \sum_{i=1}^{n-1} g(i)$$

$$\geq 1 + \sum_{i=1}^{n-1} 2^{i-1}$$

$$\geq 2^{n-1}.$$

Problem 2. Consider once again Problem 1. Design an algorithm to calculate $f(n)$ in $O(n^2)$ time.

Solution. Calculate $f(x)$ in ascending order of $x = 0, 1, ..., n$. After $f(0), ..., f(x-1)$ are ready, $f(x)$ can be obtained in $O(1 + x)$ time. The total running time is therefore $\sum_{x=0}^{n} O(1 + x) = O(n^2)$.

1
Problem 3. Recall that, on the optimal BST problem, we have explained in the class how to calculate \(\text{optavg}(1, n) \) using dynamic programming in \(O(n^3) \) time where function \(\text{optavg}(a, b) \) is recursively defined as

\[
\text{optavg}(a, b) = \begin{cases}
0 & \text{if } a > b \\
\sum_{i=a}^{b} W[i] + \min_{r=a}^{b} \{ \text{optavg}(a, r - 1) + \text{optavg}(r + 1, b) \} & \text{otherwise}
\end{cases}
\]

However, we have not yet explained how to build in an optimal BST. Describe an algorithm to do so in \(O(n^3) \) time (in fact, you can build the tree in \(O(n) \) time after having computed \(\text{optavg}(1, n) \), but you will need to modify what we did in dynamic programming slightly).

Solution. Recall that using dynamic programming we can obtain \(\text{optavg}(a, b) \) for all \(1 \leq a \leq b \leq n \). For any such \(a, b \) define \(\text{bestroot}(a, b) \) to be the \(r \in [a, b] \) that minimizes \(\text{optavg}(a, r - 1) + \text{optavg}(r + 1, b) \).

It is straightforward to slightly extend the algorithm to compute also \(\text{bestroot}(a, b) \), for all \(a, b \) satisfying \(1 \leq a \leq b \leq n \), also within the same time complexity \(O(n^3) \).

Then we can construct an optimal BST as follows. First, create a root node \(u \) with the key \(r = \text{bestroot}(1, n) \). Recursively create an optimal BST \(T_1 \) on the set \(\{1, 2, \ldots, r - 1\} \) and an optimal BST \(T_2 \) on the set \(\{r + 1, r + 2, \ldots, n\} \). Make the root of \(T_1 \) the left child of \(u \), and then the root of \(T_2 \) the right child of \(u \).

Problem 4 (Rod-Cutting; Section 15.1 of the Textbook). Let \(A \) be an array of \(n \) integers. Let us define an \(n \)-sum sequence as a sequence of integers \(x_1, x_2, \ldots, x_t \) (where \(t \) can be any integer at least 1) satisfying both conditions below:

- \(1 \leq x_i \leq n \) for all \(i \in [1, t] \)
- \(\sum_{i=1}^{t} x_i = n \)

Define the cost of the above \(n \)-sum sequence as \(\sum_{i=1}^{t} A[x_i] \). Give an algorithm to produce an \(n \)-sum sequence with the largest cost in \(O(n^2) \) time.

Solution. Define function \(\text{opt}(x) \) as the largest cost of all \(x \)-sum sets; specially, if \(x = 0 \), define \(\text{opt}(x) = 0 \). This function satisfies:

\[
\text{opt}(x) = \max_{i=1}^{x} \{ A[i] + \text{opt}(x - i) \}.
\]

In Problem 2, we have given an algorithm to calculate \(\text{opt}(n) \) in \(O(n^2) \) time.

An \(n \)-sum sequence with the greatest cost can be produced in another \(O(n) \) time as follows. For any \(x \geq 1 \), define \(\text{bestChoice}(x) \) to be the \(i \in [1, x] \) that maximizes

\[
A[i] + \text{opt}(x - i).
\]

The values \(\text{bestChoice}(x) \) of all \(x \in [1, n] \) can be computed by slightly modifying the algorithm in Problem 2 without increasing its time complexity. To produce an optimal sequence, first set \(x_1 = \text{bestChoice}(n) \). If \(x_1 = n \), we are done; otherwise, append to \(x_1 \) an optimal \((n - x_1) \)-sum sequence.