CSCI3160: Regular Exercise Set 5

Prepared by Yufei Tao

Problem 1. Let $G = (V, E)$ be a connected undirected graph where every edge carries a positive integer weight. Divide V into arbitrary disjoint subsets $V_1, V_2, ..., V_t$ for some $t \geq 2$, namely, $V_i \cap V_j = \emptyset$ for any $1 \leq i < j \leq t$, and $\bigcup_{i=1}^{t} V_i = V$. Define an edge $\{u, v\} \in E$ a cross edge if u and v are not in the same subset (i.e., there is no $i \in [1, t]$ satisfying $u \in V_i$ and $v \in V_i$). Prove: the lightest cross edge must belong to a minimum spanning tree (MST).

Solution. Immediate from the “cut property” proved in the Special Exercise List 4. Nevertheless, we give the whole proof below.

Let $e = \{u, v\}$ be the lightest cross edge. Without loss of generality, suppose that $u \in V_i$ and $j \in V_j$ for some distinct $i, j \in [1, t]$. Consider any MST T that does not contain e. We now add e to T to produce a cycle C. Walk on C by starting from u, and passing v as the next vertex, but stop as soon as we have crossed an edge e' that brings us back to a vertex on C that belongs to V_i. The edge e' must be a cross edge, and hence, must be at least as heavy as e. Deleting e' gives an MST that contains e.

Problem 2* (Kruskal’s Algorithm). Let $G = (V, E)$ be a connected undirected graph where every edge carries a positive integer weight. Prove that the following algorithm finds an MST of G correctly:

algorithm
1. $S = \emptyset$
2. while $|S| < |V| - 1$
3. find the lightest edge $e \in E$ that does not introduce any cycle with the edges in S
4. add e to S
5. the edges in S now form an MST

Solution. Set $n = |V| - 1$. Let $e_1, ..., e_{n-1}$ be the edges picked by the algorithm. We claim that for any $k \in [1, n-1]$, there is an MST that uses $e_1, ..., e_k$. The lemma then follows from the claim at $k = n - 1$. The base case of $k = 1$ is obvious (we proved this in the class). Next, assuming correctness at $k = x$ for some integer $x \geq 1$, we will prove the claim for $k = x + 1$.

Let T be an MST that includes $e_1, ..., e_x$. The existence of T is promised by the inductive assumption. If T contains e_{x+1}, we are done; the rest of the proof will focus on the case that e_{x+1} is not in T. Consider the graph $G' = (V, \{e_1, ..., e_x\})$. Denote by $G_1, ..., G_t$ the connected components (CC) of G'. Let us call an edge $e \in E$ a cross edge if it connects two vertices from different CCs.

Since e_{x+1} does not introduce any cycle with $e_1, ..., e_x$, we know that e_{x+1} must be a cross edge. Now add e_{x+1} into T, which gives rise to a cycle. By the same argument as in the solution to Problem 1, we know that the cycle must contain another cross edge e'. By the way e_{x+1} is chosen by the algorithm, we assert that the weight of e_{x+1} cannot be heavier than that of e'. Thus removing e' yields another MST; and this MST contains $e_1, ..., e_{x+1}$, as desired.

Problem 3. Consider Σ as an alphabet. Recall that a code tree on Σ as a binary tree T satisfying both conditions below:

• C_1: Every leaf node of T is labeled with a distinct letter in Σ; conversely, every letter in Σ is the label of a distinct leaf node in T.
• C_2: For every internal node of T, its left edge (if exists) is labeled with 0, and its right edge (if exists) with 1.

Define an *encoding* as a function f that maps each letter $\sigma \in \Sigma$ to a non-empty bit string, which is called the *codeword* of σ. T produces an encoding where the code word of a letter $\sigma \in \Sigma$ can be obtained by concatenating the bit labels of the edges on the path from the root to the leaf σ.

Prove:

• The encoding produces by a code tree T is a prefix code.
• Every prefix code is produced by a code tree T.

Solution. *Proof of the first bullet:* Consider any distinct leaf nodes σ_1, σ_2. Let u be their lowest common ancestor. That the bit strings of σ_1, σ_2 are different follows from the fact that the two edges of u carry different labels.

Proof of the second bullet: Let f be the encoding that corresponds to the prefix code that we are given. Define $S = \{ f(\sigma) \mid \sigma \in \Sigma \}$, namely, S collects the codewords of all the letters in Σ. Grow a binary tree T as follows. At the beginning, T has a single leaf. Then, for each letter $\sigma \in \Sigma$, we add some nodes and edges to T (if necessary) as follows:

• Initially, set u to the root of T.
• Repeat the following until u is a leaf node:
 – Set ℓ to the level of u.
 – Descend to the left (or right) child v of u if the ℓ-th bit of $f(\sigma)$ is 0 (or 1, resp.). If v does not exist, create it in T, and label its edge with u using the bit 0 (or 1, resp.).
 – Set u to v.
• Mark the leaf node u with the letter σ.

The final T is a code tree of f.

Problem 4. Consider the alphabet $\Sigma = \{1, 2, \ldots, n\}$ for some integer $n \geq 1$. Suppose that the frequency of i is strictly less than the frequency of $i + 1$, for any $i \in [1, n - 1]$. Prove: in an optimal prefix code, for any $i \in [1, n - 1]$, the codeword of i cannot be longer than that of $i + 1$.

Solution. If this is not true, then swapping the codewords of i and $i + 1$ reduces the average length.