CSCI3160: Regular Exercise Set 3

Prepared by Yufei Tao

Problem 1. Let S be a set of n intervals $\{[s_i, f_i] \mid 1 \leq i \leq n\}$, satisfying $f_1 \leq f_2 \leq ... \leq f_n$. Denote by S' the set of intervals in S that are disjoint with $[s_1, f_1]$. Prove: if $T' \subseteq S'$ is an optimal solution to the activity selection problem on S', then $T' \cup \{[s_1, f_1]\}$ is an optimal solution to the activity selection problem on S.

(Note: This completes the induction step of the correctness proof discussed in the class.)

Solution. We will prove the claim by contradiction. Suppose that $T' \cup \{[s_1, f_1]\}$ is not an optimal solution to the activity selection problem on S. As proved in the class, there exists an optimal solution T (to the activity selection problem on S) which includes $[s_1, f_1]$. Because all the intervals in $T' \cup \{[s_1, f_1]\}$ are disjoint, we know $|T' \cup \{[s_1, f_1]\}| < |T|$ (otherwise, $T' \cup \{[s_1, f_1]\}$ would be an optimal solution to the activity selection problem on S).

Since every interval in $T \setminus \{[s_1, f_1]\}$ is disjoint with $[s_1, f_1]$, we know that all the intervals in $T \setminus \{[s_1, f_1]\}$ must come from S'. As T' is an optimal solution the activity selection problem on S', we know:

$$|T'| \geq |T \setminus \{[s_1, f_1]\}|$$

$$|T' \cup \{[s_1, f_1]\}| \geq |T|$$

thus causing a contradiction.

Problem 2. Describe how to implement the activity selection algorithm discussed in the lecture in $O(n \log n)$ time, where n is the number of input intervals.

Solution. Let S be the set of n intervals given, where each interval has the form $[s, f]$. Sort the intervals in ascending order the f-value. Denote the sorted order as $[s_1, f_1], [s_2, f_2], ..., [s_n, f_n]$ where $f_1 \leq f_2 \leq ... \leq f_n$. Proceed as follows:

1. $T = \{[s_1, f_1]\}; \ last = 1$
2. for $i = 2$ to n
 3. if $s_i > f_{\text{last}}$ then
 4. add $[s_i, f_i]$ into T; last $= i$

After sorting, the above algorithm runs in $O(n)$ time.

Problem 3. Prof. Goofy proposes the following greedy algorithm to “solve” the activity selection problem. Let S be the input set of intervals. Initialize an empty T, and then repeat the following steps until S is empty:

- (Step 1) Add to T the interval $I = [s, f]$ in S that has the smallest s-value.
- (Step 2) Remove from S (i) the interval I, and (ii) all the intervals that overlap with I.

Finally, return T as the answer.

Prove: the above algorithm does not guarantee an optimal solution.

Solution. Here is a counterexample: $S = \{[1, 10], [2, 3], [4, 5]\}$. Prof. Goofy’s algorithm returns $\{[1, 10]\}$, while the optimal solution is $S = \{[2, 3], [4, 5]\}$.
Problem 4**. Prof. Goofy is giving another try! This time he proposes a more sophisticated greedy algorithm. Again, let S be the input set of intervals. Initialize an empty T, and then repeat the following steps until S is empty:

- (Step 1) Add to T the interval $I \in S$ that overlaps with the fewest other intervals in S.
- (Step 2) Remove from S the interval I as well as all the intervals that overlap with I.

Finally, return T as the answer.

Prove: the above algorithm does not guarantee an optimal solution.

Solution. The following nice counterexample is by courtesy of the site http://mypathtothe4.blogspot.com/2013/03/greedy-algorithms-activity-selection.html.

$$S = \{ [1, 10], [2, 22], [3, 23], [20, 30], [25, 45], [40, 50], [47, 62], [48, 63], [60, 70] \}$$

Prof. Goofy’s algorithm returns 3 intervals (one of them must be $[25, 45]$), while the optimal solution consists of 4 intervals.