Lecture 9: AVL-tree 1
CSC2100 Data Structure

Yufei Tao
CSE department, CUHK

March 17, 2011
In this and the next lectures, we will learn a structure called the **AVL-tree**, which also uses the binary tree as its backbone. This is a powerful structure that supports a large number of operations on an ordered set efficiently.

“**AVL**” was named after the inventors of the structure.
1 Preliminaries
 - Problem
 - Overview

2 AVL-tree
 - Basic concepts
 - Formal description

3 Searching the AVL-tree

4 Analysis
 - Results
 - Height analysis
Problem statement

Problem (Set management by keys)

Let S be a set of n items, each of which has a distinct integer key. We want to support the following operations efficiently:

- **Insert**: Add an item to S with a new key.
- **Delete**: Remove an existing item from S with key k.
- **Point search**: Return the item in S with key k.
- **Successor**: Given the key k of an item in S, return the item in S with the smallest key greater than k.
We are already familiar with insertion, deletion, and point search. Next, let us see some examples about *Successor*.

Let $S = \{10, 35, 40, 53, 60, 79, 81, 88\}$.
- Given $k = 40$, *Successor* returns 53.
- Given $k = 88$, *Successor* returns \emptyset.
Recall that a hash structure with m buckets allows us to support each insertion, deletion and point search in $O(n/m)$ time in expectation.

How about finding successors?
An AVL-tree supports all four operations in $O(\log n)$ time.
Subtrees

Definition (Left and right subtrees)

The *left subtree* of a node u is the binary tree that is rooted at the left child u_{left} of u, and includes all the nodes under u_{left}. If u does not have a left child, its left subtree is empty.

The *right subtree* of u is defined analogously.

Example

- The left subtree of u_1 has root u_2, and includes all the grey nodes.
- The right subtree of u_1 has root u_3, and includes all the black nodes.
- The right subtree of u_2 is empty.
As before, the height of a binary tree equals the maximum level of the leaf nodes. As a special case, let us define the height of an empty tree to be -1.

Example

- The left subtree of u_1 has height 2.
- The right subtree of u_3 has height 0.
- The right subtree of u_2 has height -1.
Balance

Definition (Balanced binary tree)

A *balanced binary tree* is a binary tree where every node u satisfies the property that the left and right subtrees of u differ in height by at most 1.

Example

The left tree is balanced, but the right one is not (the black node violates the above property).
Binary search tree

Definition (Binary search tree)

A *binary search tree* on a set K of n distinct keys is a binary tree with n nodes such that:

- Each node stores a different key in K.
- The key of any node u is *greater* than all the keys stored in the left subtree of u.
- The key of any node u is *smaller* than all the keys stored in the right subtree of u.

Space complexity $O(n)$.

![Binary search tree example diagram](image)
The AVL-tree

Definition (AVL-tree)

An **AVL-tree** is a balanced binary search tree.

Example

Only the right tree is an AVL-tree (the left tree is not balanced).
Point search

Example

Assume that we want to find the node with key \(k = 60 \).

- Start from the root \(u \) (with key 40).
- Since \(k > 40 \), \(k \) (if it exists) must be in the right subtree of \(u \). Hence, we access the right child \(u' \) (with key 73) of \(u \).
- Since \(k < 73 \), \(k \) (if it exists) must be in the left subtree of \(u' \). Hence, we access the left child \(u'' \) of \(u' \).
- \(u'' \) is exactly what we are looking for.
Algorithm *PointSearch*(k)

/* find the node with key k */

1. \(u = \) the root
2. while \(u \) is not NULL
3. \(\text{if } u.key = k \) return \(u \)
4. \(\text{if } u.key < k \)
5. \(u = \) the right child of \(u \)
6. \(\text{else} \)
7. \(u = \) the left child of \(u \)
8. return \(\emptyset \)
Design an efficient algorithm for the *Successor* operator. We will discuss it in the tutorial.
Time complexities

- *PointSearch* accesses at most a single root-to-leaf path. Hence, it takes $O(h)$ time, where h is the height of the AVL-tree.

- In the tutorial, we will see that *Successor* can also be supported in the same amount of time.

The next few slides show that $h = O(\log n)$, where n is the number of nodes.
Height analysis

Height of a balanced binary tree

A balanced binary tree with \(n \) nodes has height \(O(\log n) \).

Proof.

Denote the height as \(h \). We will show that a balanced binary tree with height \(h \) must have \(\Omega(2^{h/2}) \) nodes.

Once this is done, it follows that there is a constant \(C > 0 \) such that:

\[
\begin{align*}
 n & \geq C \cdot 2^{h/2} \Rightarrow \\
 2^{h/2} & \leq n/C \Rightarrow \\
 h/2 & \leq \log_2(n/C) \Rightarrow \\
 h & = O(\log n)
\end{align*}
\]
Proof. (cont.)

Let $f(h)$ be the minimum number of nodes in a balanced binary tree with height h. It is clear that:

$$f(0) = 1$$
$$f(1) = 2$$
Proof. (cont.)

In general, for \(h \geq 2 \):

\[
 f(h) = 1 + f(h - 1) + f(h - 2)
\]
Height analysis

Height of a balanced binary tree

Proof. (cont.)

When h is an even number:

\[
 f(h) = 1 + f(h - 1) + f(h - 2)
\]

\[
 > 2 \cdot f(h - 2)
\]

\[
 > 2^2 \cdot f(h - 4)
\]

...

\[
 > 2^{h/2} \cdot f(0)
\]

\[
 = 2^{h/2}
\]
Proof. (cont.)

When h an odd number (i.e., $h \geq 3$):

\[
\begin{align*}
f(h) & > f(h - 1) \\
& > 2^{(h - 1)/2} \\
& = 2^{h/2} / \sqrt{2} \\
& = \Omega(2^{h/2})
\end{align*}
\]
Playback of this lecture:

- AVL-tree.
- Space $O(n)$.
- Point search in $O(\log n)$ time.
- Successor search in $O(\log n)$ time.

In the next lecture, we will discuss the insertion and deletion algorithms.